8,481 research outputs found

    Emendation of Undesirable Attack on Multiparty Data Sharing With Anonymous Id Assignment Using AIDA Algorithm

    Get PDF
    Security is a state of being free from danger or threat. When someone finds the vulnerabilities and loopholes in a system without permission means the system lacks its security. Wherever a secure data sharing occurs between multiparty there would be the possibility for undesirable attacks. In a variety of application domains such as patient medical records, military applications, social networking, electronic voting, business and personal applications there is a great significance of anonymity. Using this system we can store our data as groups and also encrypt it with encryption key. Only the privileged person can see the data. The secure computation function widely used is secure sum that allows parties to compute the sum of their individual inputs without mentioning the inputs to one another. This function helps to characterize the complexities of the secure multiparty computation. Another algorithm for sharing simple integer data on top of secure sum is built. The sharing algorithm will be used at each iteration of this algorithm for anonymous ID assignment (AIDA). By this algorithm and certain security measures it is possible to have a system which is free from undesirable attacks. Keywords:Vulnerability, anonymity, encryption key, secure multiparty computation, AIDA

    Literature Survey on Secure Multiparty Anonymous Data Sharing

    Get PDF
    The  popularity of internet as a communication medium whether for personal or business requires anonymous communication in various ways. Businesses also have legitimate reasons to make communication anonymous and avoid the consequences of identity revelation. The problem of sharing privately held data so that the individuals who are the subjects of the data cannot be identified has been researched extensively. Researchers have understood the need of anonymity in various application domains: patient medical records, electronic voting, e-mail, social networking, etc. Another form of anonymity, as used in secure multiparty computation, allows multiple parties on a network to jointly carry out a global computation that depends on data from each party while the data held by each party remains unknown to the other parties. The secure computation function widely used is secure sum that allows parties to compute the sum of their individual inputs without mentioning the inputs to one another. This function helps to characterize the complexities of the secure multiparty computation. Keywords:Anonymity,Secure multiparty computatio

    Efficient and Privacy-Preserving Ride Sharing Organization for Transferable and Non-Transferable Services

    Full text link
    Ride-sharing allows multiple persons to share their trips together in one vehicle instead of using multiple vehicles. This can reduce the number of vehicles in the street, which consequently can reduce air pollution, traffic congestion and transportation cost. However, a ride-sharing organization requires passengers to report sensitive location information about their trips to a trip organizing server (TOS) which creates a serious privacy issue. In addition, existing ride-sharing schemes are non-flexible, i.e., they require a driver and a rider to have exactly the same trip to share a ride. Moreover, they are non-scalable, i.e., inefficient if applied to large geographic areas. In this paper, we propose two efficient privacy-preserving ride-sharing organization schemes for Non-transferable Ride-sharing Services (NRS) and Transferable Ride-sharing Services (TRS). In the NRS scheme, a rider can share a ride from its source to destination with only one driver whereas, in TRS scheme, a rider can transfer between multiple drivers while en route until he reaches his destination. In both schemes, the ride-sharing area is divided into a number of small geographic areas, called cells, and each cell has a unique identifier. Each driver/rider should encrypt his trip's data and send an encrypted ride-sharing offer/request to the TOS. In NRS scheme, Bloom filters are used to compactly represent the trip information before encryption. Then, the TOS can measure the similarity between the encrypted trips data to organize shared rides without revealing either the users' identities or the location information. In TRS scheme, drivers report their encrypted routes, an then the TOS builds an encrypted directed graph that is passed to a modified version of Dijkstra's shortest path algorithm to search for an optimal path of rides that can achieve a set of preferences defined by the riders

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    p-probabilistic k-anonymous microaggregation for the anonymization of surveys with uncertain participation

    Get PDF
    We develop a probabilistic variant of k-anonymous microaggregation which we term p-probabilistic resorting to a statistical model of respondent participation in order to aggregate quasi-identifiers in such a manner that k-anonymity is concordantly enforced with a parametric probabilistic guarantee. Succinctly owing the possibility that some respondents may not finally participate, sufficiently larger cells are created striving to satisfy k-anonymity with probability at least p. The microaggregation function is designed before the respondents submit their confidential data. More precisely, a specification of the function is sent to them which they may verify and apply to their quasi-identifying demographic variables prior to submitting the microaggregated data along with the confidential attributes to an authorized repository. We propose a number of metrics to assess the performance of our probabilistic approach in terms of anonymity and distortion which we proceed to investigate theoretically in depth and empirically with synthetic and standardized data. We stress that in addition to constituting a functional extension of traditional microaggregation, thereby broadening its applicability to the anonymization of statistical databases in a wide variety of contexts, the relaxation of trust assumptions is arguably expected to have a considerable impact on user acceptance and ultimately on data utility through mere availability.Peer ReviewedPostprint (author's final draft
    • …
    corecore