5,219 research outputs found

    Federated Object Detection for Quality Inspection in Shared Production

    Full text link
    Federated learning (FL) has emerged as a promising approach for training machine learning models on decentralized data without compromising data privacy. In this paper, we propose a FL algorithm for object detection in quality inspection tasks using YOLOv5 as the object detection algorithm and Federated Averaging (FedAvg) as the FL algorithm. We apply this approach to a manufacturing use-case where multiple factories/clients contribute data for training a global object detection model while preserving data privacy on a non-IID dataset. Our experiments demonstrate that our FL approach achieves better generalization performance on the overall clients' test dataset and generates improved bounding boxes around the objects compared to models trained using local clients' datasets. This work showcases the potential of FL for quality inspection tasks in the manufacturing industry and provides valuable insights into the performance and feasibility of utilizing YOLOv5 and FedAvg for federated object detection.Comment: Will submit it to an IEEE conferenc

    Embedding Representation of Academic Heterogeneous Information Networks Based on Federated Learning

    Full text link
    Academic networks in the real world can usually be portrayed as heterogeneous information networks (HINs) with multi-type, universally connected nodes and multi-relationships. Some existing studies for the representation learning of homogeneous information networks cannot be applicable to heterogeneous information networks because of the lack of ability to issue heterogeneity. At the same time, data has become a factor of production, playing an increasingly important role. Due to the closeness and blocking of businesses among different enterprises, there is a serious phenomenon of data islands. To solve the above challenges, aiming at the data information of scientific research teams closely related to science and technology, we proposed an academic heterogeneous information network embedding representation learning method based on federated learning (FedAHE), which utilizes node attention and meta path attention mechanism to learn low-dimensional, dense and real-valued vector representations while preserving the rich topological information and meta-path-based semantic information of nodes in network. Moreover, we combined federated learning with the representation learning of HINs composed of scientific research teams and put forward a federal training mechanism based on dynamic weighted aggregation of parameters (FedDWA) to optimize the node embeddings of HINs. Through sufficient experiments, the efficiency, accuracy and feasibility of our proposed framework are demonstrated

    Moving Populations Event Recognition Under Re-Identification and Data Locality Constraints

    Get PDF
    For more than a decade tracking and tracing physical objects has been target of information systems within the realm of research on the Internet of Things. But application to human populations requires reconsideration of re-identification and data locality requirements due to ethical and legal constraints. For this domain, we propose a generic event recognition architecture (GERA) and evaluate its applicability for developing a sensor-based information system for recognizing moving population densities by obeying non-re-identification and data decentrality requirements. Empirical evaluations show that this information system provides mean structures for measuring event data and deriving predictions that are statistically equal to manually measured actual data. Finally, a general discussion on the integration of event recognition systems into busi-ness process environments is given

    Dutkat: A Privacy-Preserving System for Automatic Catch Documentation and Illegal Activity Detection in the Fishing Industry

    Get PDF
    United Nations' Sustainable Development Goal 14 aims to conserve and sustainably use the oceans and their resources for the benefit of people and the planet. This includes protecting marine ecosystems, preventing pollution, and overfishing, and increasing scientific understanding of the oceans. Achieving this goal will help ensure the health and well-being of marine life and the millions of people who rely on the oceans for their livelihoods. In order to ensure sustainable fishing practices, it is important to have a system in place for automatic catch documentation. This thesis presents our research on the design and development of Dutkat, a privacy-preserving, edge-based system for catch documentation and detection of illegal activities in the fishing industry. Utilising machine learning techniques, Dutkat can analyse large amounts of data and identify patterns that may indicate illegal activities such as overfishing or illegal discard of catch. Additionally, the system can assist in catch documentation by automating the process of identifying and counting fish species, thus reducing potential human error and increasing efficiency. Specifically, our research has consisted of the development of various components of the Dutkat system, evaluation through experimentation, exploration of existing data, and organization of machine learning competitions. We have also implemented it from a compliance-by-design perspective to ensure that the system is in compliance with data protection laws and regulations such as GDPR. Our goal with Dutkat is to promote sustainable fishing practices, which aligns with the Sustainable Development Goal 14, while simultaneously protecting the privacy and rights of fishing crews

    Towards Data Sharing across Decentralized and Federated IoT Data Analytics Platforms

    Get PDF
    In the past decade the Internet-of-Things concept has overwhelmingly entered all of the fields where data are produced and processed, thus, resulting in a plethora of IoT platforms, typically cloud-based, that centralize data and services management. In this scenario, the development of IoT services in domains such as smart cities, smart industry, e-health, automotive, are possible only for the owner of the IoT deployments or for ad-hoc business one-to-one collaboration agreements. The realization of "smarter" IoT services or even services that are not viable today envisions a complete data sharing with the usage of multiple data sources from multiple parties and the interconnection with other IoT services. In this context, this work studies several aspects of data sharing focusing on Internet-of-Things. We work towards the hyperconnection of IoT services to analyze data that goes beyond the boundaries of a single IoT system. This thesis presents a data analytics platform that: i) treats data analytics processes as services and decouples their management from the data analytics development; ii) decentralizes the data management and the execution of data analytics services between fog, edge and cloud; iii) federates peers of data analytics platforms managed by multiple parties allowing the design to scale into federation of federations; iv) encompasses intelligent handling of security and data usage control across the federation of decentralized platforms instances to reduce data and service management complexity. The proposed solution is experimentally evaluated in terms of performances and validated against use cases. Further, this work adopts and extends available standards and open sources, after an analysis of their capabilities, fostering an easier acceptance of the proposed framework. We also report efforts to initiate an IoT services ecosystem among 27 cities in Europe and Korea based on a novel methodology. We believe that this thesis open a viable path towards a hyperconnection of IoT data and services, minimizing the human effort to manage it, but leaving the full control of the data and service management to the users' will
    corecore