2,790 research outputs found

    Privacy-Preserving Adversarial Networks

    Full text link
    We propose a data-driven framework for optimizing privacy-preserving data release mechanisms to attain the information-theoretically optimal tradeoff between minimizing distortion of useful data and concealing specific sensitive information. Our approach employs adversarially-trained neural networks to implement randomized mechanisms and to perform a variational approximation of mutual information privacy. We validate our Privacy-Preserving Adversarial Networks (PPAN) framework via proof-of-concept experiments on discrete and continuous synthetic data, as well as the MNIST handwritten digits dataset. For synthetic data, our model-agnostic PPAN approach achieves tradeoff points very close to the optimal tradeoffs that are analytically-derived from model knowledge. In experiments with the MNIST data, we visually demonstrate a learned tradeoff between minimizing the pixel-level distortion versus concealing the written digit.Comment: 16 page

    On the Measurement of Privacy as an Attacker's Estimation Error

    Get PDF
    A wide variety of privacy metrics have been proposed in the literature to evaluate the level of protection offered by privacy enhancing-technologies. Most of these metrics are specific to concrete systems and adversarial models, and are difficult to generalize or translate to other contexts. Furthermore, a better understanding of the relationships between the different privacy metrics is needed to enable more grounded and systematic approach to measuring privacy, as well as to assist systems designers in selecting the most appropriate metric for a given application. In this work we propose a theoretical framework for privacy-preserving systems, endowed with a general definition of privacy in terms of the estimation error incurred by an attacker who aims to disclose the private information that the system is designed to conceal. We show that our framework permits interpreting and comparing a number of well-known metrics under a common perspective. The arguments behind these interpretations are based on fundamental results related to the theories of information, probability and Bayes decision.Comment: This paper has 18 pages and 17 figure

    RANDOMIZATION BASED PRIVACY PRESERVING CATEGORICAL DATA ANALYSIS

    Get PDF
    The success of data mining relies on the availability of high quality data. To ensure quality data mining, effective information sharing between organizations becomes a vital requirement in today’s society. Since data mining often involves sensitive infor- mation of individuals, the public has expressed a deep concern about their privacy. Privacy-preserving data mining is a study of eliminating privacy threats while, at the same time, preserving useful information in the released data for data mining. This dissertation investigates data utility and privacy of randomization-based mod- els in privacy preserving data mining for categorical data. For the analysis of data utility in randomization model, we first investigate the accuracy analysis for associ- ation rule mining in market basket data. Then we propose a general framework to conduct theoretical analysis on how the randomization process affects the accuracy of various measures adopted in categorical data analysis. We also examine data utility when randomization mechanisms are not provided to data miners to achieve better privacy. We investigate how various objective associ- ation measures between two variables may be affected by randomization. We then extend it to multiple variables by examining the feasibility of hierarchical loglinear modeling. Our results provide a reference to data miners about what they can do and what they can not do with certainty upon randomized data directly without the knowledge about the original distribution of data and distortion information. Data privacy and data utility are commonly considered as a pair of conflicting re- quirements in privacy preserving data mining applications. In this dissertation, we investigate privacy issues in randomization models. In particular, we focus on the attribute disclosure under linking attack in data publishing. We propose efficient so- lutions to determine optimal distortion parameters such that we can maximize utility preservation while still satisfying privacy requirements. We compare our randomiza- tion approach with l-diversity and anatomy in terms of utility preservation (under the same privacy requirements) from three aspects (reconstructed distributions, accuracy of answering queries, and preservation of correlations). Our empirical results show that randomization incurs significantly smaller utility loss

    Privacy preserving data mining

    Get PDF
    A fruitful direction for future data mining research will be the development of technique that incorporates privacy concerns. Specifically, we address the following question. Since the primary task in data mining is the development of models about aggregated data, can we develop accurate models without access to precise information in individual data records? We analyze the possibility of privacy in data mining techniques in two phasesrandomization and reconstruction. Data mining services require accurate input data for their results to be meaningful, but privacy concerns may influence users to provide spurious information. To preserve client privacy in the data mining process, techniques based on random perturbation of data records are used. Suppose there are many clients, each having some personal information, and one server, which is interested only in aggregate, statistically significant, properties of this information. The clients can protect privacy of their data by perturbing it with a randomization algorithm and then submitting the randomized version. This approach is called randomization. The randomization algorithm is chosen so that aggregate properties of the data can be recovered with sufficient precision, while individual entries are significantly distorted. For the concept of using value distortion to protect privacy to be useful, we need to be able to reconstruct the original data distribution so that data mining techniques can be effectively utilized to yield the required statistics. Analysis Let xi be the original instance of data at client i. We introduce a random shift yi using randomization technique explained below. The server runs the reconstruction algorithm (also explained below) on the perturbed value zi = xi + yi to get an approximate of the original data distribution suitable for data mining applications. Randomization We have used the following randomizing operator for data perturbation: Given x, let R(x) be x+€ (mod 1001) where € is chosen uniformly at random in {-100…100}. Reconstruction of discrete data set P(X=x) = f X (x) ----Given P(Y=y) = F y (y) ---Given P (Z=z) = f Z (z) ---Given f (X/Z) = P(X=x | Z=z) = P(X=x, Z=z)/P (Z=z) = P(X=x, X+Y=Z)/ f Z (z) = P(X=x, Y=Z - X)/ f Z (z) = P(X=x)*P(Y=Z-X)/ f Z (z) = P(X=x)*P(Y=y)/ f Z (z) Results In this project we have done two aspects of privacy preserving data mining. The first phase involves perturbing the original data set using ‘randomization operator’ techniques and the second phase deals with reconstructing the randomized data set using the proposed algorithm to get an approximate of the original data set. The performance metrics like percentage deviation, accuracy and privacy breaches were calculated. In this project we studied the technical feasibility of realizing privacy preserving data mining. The basic promise was that the sensitive values in a user’s record will be perturbed using a randomizing function and an approximate of the perturbed data set be recovered using reconstruction algorithm

    The role of Signal Processing in Meeting Privacy Challenges [an overview]

    No full text
    International audienceWith the increasing growth and sophistication of information technology, personal information is easily accessible electronically. This flood of released personal data raises important privacy concerns. However, electronic data sources exist to be used and have tremendous value (utility) to their users and collectors, leading to a tension between privacy and utility. This article aims to quantify that tension by means of an information-theoretic framework and motivate signal processing approaches to privacy problems. The framework is applied to a number of case studies to illustrate concretely how signal processing can be harnessed to provide data privacy

    p-probabilistic k-anonymous microaggregation for the anonymization of surveys with uncertain participation

    Get PDF
    We develop a probabilistic variant of k-anonymous microaggregation which we term p-probabilistic resorting to a statistical model of respondent participation in order to aggregate quasi-identifiers in such a manner that k-anonymity is concordantly enforced with a parametric probabilistic guarantee. Succinctly owing the possibility that some respondents may not finally participate, sufficiently larger cells are created striving to satisfy k-anonymity with probability at least p. The microaggregation function is designed before the respondents submit their confidential data. More precisely, a specification of the function is sent to them which they may verify and apply to their quasi-identifying demographic variables prior to submitting the microaggregated data along with the confidential attributes to an authorized repository. We propose a number of metrics to assess the performance of our probabilistic approach in terms of anonymity and distortion which we proceed to investigate theoretically in depth and empirically with synthetic and standardized data. We stress that in addition to constituting a functional extension of traditional microaggregation, thereby broadening its applicability to the anonymization of statistical databases in a wide variety of contexts, the relaxation of trust assumptions is arguably expected to have a considerable impact on user acceptance and ultimately on data utility through mere availability.Peer ReviewedPostprint (author's final draft

    A Novel Privacy Disclosure Risk Measure and Optimizing Privacy Preserving Data Publishing Techniques

    Get PDF
    A tremendous amount of individual-level data is generated each day, with a wide variety of uses. This data often contains sensitive information about individuals, which can be disclosed by “adversaries”. Even when direct identifiers such as social security numbers are masked, an adversary may be able to recognize an individual\u27s identity for a data record by looking at the values of quasi-identifiers (QID), known as identity disclosure, or can uncover sensitive attributes (SA) about an individual through attribute disclosure. In data privacy field, multiple disclosure risk measures have been proposed. These share two drawbacks: they do not consider identity and attribute disclosure concurrently, and they make restrictive assumptions on an adversary\u27s knowledge and disclosure target by assuming certain attributes are QIDs and SAs with clear boundary in between. In this study, we present a Flexible Adversary Disclosure Risk (FADR) measure that addresses these limitations, by presenting a single combined metric of identity and attribute disclosure, and considering all scenarios for an adversary’s knowledge and disclosure targets while providing the flexibility to model a specific disclosure preference. In addition, we employ FADR measure to develop our novel “RU Generalization” algorithm that anonymizes a sensitive dataset to be able to publish the data for public access while preserving the privacy of individuals in the dataset. The challenge is to preserve privacy without incurring excessive information loss. Our RU Generalization algorithm is a greedy heuristic algorithm, which aims at minimizing the combination of both disclosure risk and information loss, to obtain an optimized anonymized dataset. We have conducted a set of experiments on a benchmark dataset from 1994 Census database, to evaluate both our FADR measure and RU Generalization algorithm. We have shown the robustness of our FADR measure and the effectiveness of our RU Generalization algorithm by comparing with the benchmark anonymization algorithm

    State of the Art in Privacy Preserving Data Mining

    Get PDF
    Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when Data Mining techniques are used. Such a trend, especially in the context of public databases, or in the context of sensible information related to critical infrastructures, represents, nowadays a not negligible thread. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of modifying the database in such a way to prevent the discovery of sensible information. This is a very complex task and there exist in the scientific literature some different approaches to the problem. In this work we present a "Survey" of the current PPDM methodologies which seem promising for the future.JRC.G.6-Sensors, radar technologies and cybersecurit

    Non-Metric Multi-Dimensional Scaling for Distance-Based Privacy-Preserving Data Mining

    Get PDF
    Recent advances in the field of data mining have led to major concerns about privacy. Sharing data with external parties for analysis puts private information at risk. The original data are often perturbed before external release to protect private information. However, data perturbation can decrease the utility of the output. A good perturbation technique requires balance between privacy and utility. This study proposes a new method for data perturbation in the context of distance-based data mining. We propose the use of non-metric multi-dimensional scaling (MDS) as a suitable technique to perturb data that are intended for distance-based data mining. The basic premise of this approach is to transform the original data into a lower dimensional space and generate new data that protect private details while maintaining good utility for distance-based data mining analysis. We investigate the extent the perturbed data are able to preserve useful statistics for distance-based analysis and to provide protection against malicious attacks. We demonstrate that our method provides an adequate alternative to data randomisation approaches and other dimensionality reduction approaches. Testing is conducted on a wide range of benchmarked datasets and against some existing perturbation methods. The results confirm that our method has very good overall performance, is competitive with other techniques, and produces clustering and classification results at least as good, and in some cases better, than the results obtained from the original data

    Spectral anonymization of data

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 87-96).Data anonymization is the process of conditioning a dataset such that no sensitive information can be learned about any specific individual, but valid scientific analysis can nevertheless be performed on it. It is not sufficient to simply remove identifying information because the remaining data may be enough to infer the individual source of the record (a reidentification disclosure) or to otherwise learn sensitive information about a person (a predictive disclosure). The only known way to prevent these disclosures is to remove additional information from the dataset. Dozens of anonymization methods have been proposed over the past few decades; most work by perturbing or suppressing variable values. None have been successful at simultaneously providing perfect privacy protection and allowing perfectly accurate scientific analysis. This dissertation makes the new observation that the anonymizing operations do not need to be made in the original basis of the dataset. Operating in a different, judiciously chosen basis can improve privacy protection, analytic utility, and computational efficiency. I use the term 'spectral anonymization' to refer to anonymizing in a spectral basis, such as the basis provided by the data's eigenvectors. Additionally, I propose new measures of reidentification and prediction risk that are more generally applicable and more informative than existing measures. I also propose a measure of analytic utility that assesses the preservation of the multivariate probability distribution. Finally, I propose the demanding reference standard of nonparticipation in the study to define adequate privacy protection. I give three examples of spectral anonymization in practice. The first example improves basic cell swapping from a weak algorithm to one competitive with state of-the-art methods merely by a change of basis.(cont) The second example demonstrates avoiding the curse of dimensionality in microaggregation. The third describes a powerful algorithm that reduces computational disclosure risk to the same level as that of nonparticipants and preserves at least 4th order interactions in the multivariate distribution. No previously reported algorithm has achieved this combination of results.by Thomas Anton Lasko.Ph.D
    corecore