44,527 research outputs found

    Secure and Privacy-Preserving Average Consensus

    Full text link
    Average consensus is fundamental for distributed systems since it underpins key functionalities of such systems ranging from distributed information fusion, decision-making, to decentralized control. In order to reach an agreement, existing average consensus algorithms require each agent to exchange explicit state information with its neighbors. This leads to the disclosure of private state information, which is undesirable in cases where privacy is of concern. In this paper, we propose a novel approach that enables secure and privacy-preserving average consensus in a decentralized architecture in the absence of any trusted third-parties. By leveraging homomorphic cryptography, our approach can guarantee consensus to the exact value in a deterministic manner. The proposed approach is light-weight in computation and communication, and applicable to time-varying interaction topology cases. A hardware implementation is presented to demonstrate the capability of our approach.Comment: 7 pages, 4 figures, paper is accepted to CPS-SPC'1

    Vector-valued Privacy-Preserving Average Consensus

    Full text link
    Achieving average consensus without disclosing sensitive information can be a critical concern for multi-agent coordination. This paper examines privacy-preserving average consensus (PPAC) for vector-valued multi-agent networks. In particular, a set of agents with vector-valued states aim to collaboratively reach an exact average consensus of their initial states, while each agent's initial state cannot be disclosed to other agents. We show that the vector-valued PPAC problem can be solved via associated matrix-weighted networks with the higher-dimensional agent state. Specifically, a novel distributed vector-valued PPAC algorithm is proposed by lifting the agent-state to higher-dimensional space and designing the associated matrix-weighted network with dynamic, low-rank, positive semi-definite coupling matrices to both conceal the vector-valued agent state and guarantee that the multi-agent network asymptotically converges to the average consensus. Essentially, the convergence analysis can be transformed into the average consensus problem on switching matrix-weighted networks. We show that the exact average consensus can be guaranteed and the initial agents' states can be kept private if each agent has at least one "legitimate" neighbor. The algorithm, involving only basic matrix operations, is computationally more efficient than cryptography-based approaches and can be implemented in a fully distributed manner without relying on a third party. Numerical simulation is provided to illustrate the effectiveness of the proposed algorithm

    A dynamical approach to privacy preserving average consensus

    Full text link
    In this paper we propose a novel method for achieving average consensus in a continuous-time multiagent network while avoiding to disclose the initial states of the individual agents. In order to achieve privacy protection of the state variables, we introduce maps, called output masks, which alter the value of the states before transmitting them. These output masks are local (i.e., implemented independently by each agent), deterministic, time-varying and converging asymptotically to the true state. The resulting masked system is also time-varying and has the original (unmasked) system as its limit system. It is shown in the paper that the masked system has the original average consensus value as a global attractor. However, in order to preserve privacy, it cannot share an equilibrium point with the unmasked system, meaning that in the masked system the global attractor cannot be also stable.Comment: 19 pages, 2 figures (minor changes w.r.t. previous version
    • …
    corecore