1,856 research outputs found

    Low-latency mix networks for anonymous communication

    Get PDF
    Every modern online application relies on the network layer to transfer information, which exposes the metadata associated with digital communication. These distinctive characteristics encapsulate equally meaningful information as the content of the communication itself and allow eavesdroppers to uniquely identify users and their activities. Hence, by exposing the IP addresses and by analyzing patterns of the network traffic, a malicious entity can deanonymize most online communications. While content confidentiality has made significant progress over the years, existing solutions for anonymous communication which protect the network metadata still have severe limitations, including centralization, limited security, poor scalability, and high-latency. As the importance of online privacy increases, the need to build low-latency communication systems with strong security guarantees becomes necessary. Therefore, in this thesis, we address the problem of building multi-purpose anonymous networks that protect communication privacy. To this end, we design a novel mix network Loopix, which guarantees communication unlinkability and supports applications with various latency and bandwidth constraints. Loopix offers better security properties than any existing solution for anonymous communications while at the same time being scalable and low-latency. Furthermore, we also explore the problem of active attacks and malicious infrastructure nodes, and propose a Miranda mechanism which allows to efficiently mitigate them. In the second part of this thesis, we show that mix networks may be used as a building block in the design of a private notification system, which enables fast and low-cost online notifications. Moreover, its privacy properties benefit from an increasing number of users, meaning that the system can scale to millions of clients at a lower cost than any alternative solution

    Mitigating Intersection Attacks in Anonymous Microblogging

    Full text link
    Anonymous microblogging systems are known to be vulnerable to intersection attacks due to network churn. An adversary that monitors all communications can leverage the churn to learn who is publishing what with increasing confidence over time. In this paper, we propose a protocol for mitigating intersection attacks in anonymous microblogging systems by grouping users into anonymity sets based on similarities in their publishing behavior. The protocol provides a configurable communication schedule for users in each set to manage the inevitable trade-off between latency and bandwidth overhead. In our evaluation, we use real-world datasets from two popular microblogging platforms, Twitter and Reddit, to simulate user publishing behavior. The results demonstrate that the protocol can protect users against intersection attacks at low bandwidth overhead when the users adhere to communication schedules. In addition, the protocol can sustain a slow degradation in the size of the anonymity set over time under various churn rates

    A Survey on Routing in Anonymous Communication Protocols

    No full text
    The Internet has undergone dramatic changes in the past 15 years, and now forms a global communication platform that billions of users rely on for their daily activities. While this transformation has brought tremendous benefits to society, it has also created new threats to online privacy, ranging from profiling of users for monetizing personal information to nearly omnipotent governmental surveillance. As a result, public interest in systems for anonymous communication has drastically increased. Several such systems have been proposed in the literature, each of which offers anonymity guarantees in different scenarios and under different assumptions, reflecting the plurality of approaches for how messages can be anonymously routed to their destination. Understanding this space of competing approaches with their different guarantees and assumptions is vital for users to understand the consequences of different design options. In this work, we survey previous research on designing, developing, and deploying systems for anonymous communication. To this end, we provide a taxonomy for clustering all prevalently considered approaches (including Mixnets, DC-nets, onion routing, and DHT-based protocols) with respect to their unique routing characteristics, deployability, and performance. This, in particular, encompasses the topological structure of the underlying network; the routing information that has to be made available to the initiator of the conversation; the underlying communication model; and performance-related indicators such as latency and communication layer. Our taxonomy and comparative assessment provide important insights about the differences between the existing classes of anonymous communication protocols, and it also helps to clarify the relationship between the routing characteristics of these protocols, and their performance and scalability

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Privacy for Targeted Advertising

    Get PDF
    In the past two decades, targeted online advertising has led to massive data collection, aggregation, and exchange. This infrastructure raises significant privacy concerns. While several prominent theories of data privacy have been proposed over the same period of time, these notions have limited application to advertising ecosystems. Differential privacy, the most robust of them, is inherently inapplicable to queries about particular individuals in the dataset. We therefore formulate a new definition of privacy for accessing private information about unknown individuals identified by some random token. Unlike most current privacy definitions, our\u27s takes probabilistic prior information into account and is intended to reflect the use of aggregated web information for targeted advertising. We explain how our theory captures the natural expectation of privacy in the advertising setting and avoids the limitations of existing alternatives. However, although we can construct artificial databases which satisfy our notion of privacy together with reasonable utility, we do not have evidence that real world databases can be sanitized to preserve reasonable utility. In fact we offer real world evidence that adherence to our notion of privacy almost completely destroys utility. Our results suggest that a significant theoretical advance or a change in infrastructure is needed in order to obtain rigorous privacy guarantees in the digital advertising ecosystem

    Proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET 2013)

    Get PDF
    "This book contains the proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET) 2013 which was held on 16.-17.September 2013 in Paphos (Cyprus) in conjunction with the EC-TEL conference. The workshop and hence the proceedings are divided in two parts: on Day 1 the EuroPLOT project and its results are introduced, with papers about the specific case studies and their evaluation. On Day 2, peer-reviewed papers are presented which address specific topics and issues going beyond the EuroPLOT scope. This workshop is one of the deliverables (D 2.6) of the EuroPLOT project, which has been funded from November 2010 – October 2013 by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission through the Lifelong Learning Programme (LLL) by grant #511633. The purpose of this project was to develop and evaluate Persuasive Learning Objects and Technologies (PLOTS), based on ideas of BJ Fogg. The purpose of this workshop is to summarize the findings obtained during this project and disseminate them to an interested audience. Furthermore, it shall foster discussions about the future of persuasive technology and design in the context of learning, education and teaching. The international community working in this area of research is relatively small. Nevertheless, we have received a number of high-quality submissions which went through a peer-review process before being selected for presentation and publication. We hope that the information found in this book is useful to the reader and that more interest in this novel approach of persuasive design for teaching/education/learning is stimulated. We are very grateful to the organisers of EC-TEL 2013 for allowing to host IWEPLET 2013 within their organisational facilities which helped us a lot in preparing this event. I am also very grateful to everyone in the EuroPLOT team for collaborating so effectively in these three years towards creating excellent outputs, and for being such a nice group with a very positive spirit also beyond work. And finally I would like to thank the EACEA for providing the financial resources for the EuroPLOT project and for being very helpful when needed. This funding made it possible to organise the IWEPLET workshop without charging a fee from the participants.

    Partitioned Group Password-Based Authenticated Key Exchange

    Get PDF
    Group Password-Based Authenticated Key Exchange (GPAKE) allows a group of users to establish a secret key, as long as all of them share the same password. However, in existing GPAKE protocols as soon as one user runs the protocol with a non-matching password, all the others abort and no key is established. In this paper we seek for a more flexible, yet secure, GPAKE and put forward the notion of partitioned GPAKE. Partitioned GPAKE tolerates users that run the protocol on different passwords. Through a protocol run, any subgroup of users that indeed share a password, establish a session key, factoring out the ``noise\u27\u27 of inputs by users holding different passwords. At the same time any two keys, each established by a different subgroup of users, are pair-wise independent if the corresponding subgroups hold different passwords. We also introduce the notion of password-privacy for partitioned GPAKE, which is a kind of affiliation hiding property, ensuring that an adversary should not be able to tell whether any given set of users share a password. Finally, we propose an efficient instantiation of partitioned GPAKE building on an unforgeable symmetric encryption scheme and a PAKE by Bellare et al. Our proposal is proven secure in the random oracle/ideal cipher model, and requires only two communication rounds
    • …
    corecore