57 research outputs found

    Health Participatory Sensing Networks for Mobile Device Public Health Data Collection and Intervention

    Get PDF
    The pervasive availability and increasingly sophisticated functionalities of smartphones and their connected external sensors or wearable devices can provide new data collection capabilities relevant to public health. Current research and commercial efforts have concentrated on sensor-based collection of health data for personal fitness and personal healthcare feedback purposes. However, to date there has not been a detailed investigation of how such smartphones and sensors can be utilized for public health data collection. Unlike most sensing applications, in the case of public health, capturing comprehensive and detailed data is not a necessity, as aggregate data alone is in many cases sufficient for public health purposes. As such, public health data has the characteristic of being capturable whilst still not infringing privacy, as the detailed data of individuals that may allow re-identification is not needed, but rather only aggregate, de-identified and non-unique data for an individual. These types of public health data collection provide the challenge of the need to be flexible enough to answer a range of public health queries, while ensuring the level of detail returned preserves privacy. Additionally, the distribution of public health data collection request and other information to the participants without identifying the individual is a core requirement. An additional requirement for health participatory sensing networks is the ability to perform public health interventions. As with data collection, this needs to be completed in a non-identifying and privacy preserving manner. This thesis proposes a solution to these challenges, whereby a form of query assurance provides private and secure distribution of data collection requests and public health interventions to participants. While an additional, privacy preserving threshold approach to local processing of data prior to submission is used to provide re-identification protection for the participant. The evaluation finds that with manageable overheads, minimal reduction in the detail of collected data and strict communication privacy; privacy and anonymity can be preserved. This is significant for the field of participatory health sensing as a major concern of participants is most often real or perceived privacy risks of contribution

    Self-regulatory information sharing in participatory social sensing

    Get PDF
    Participation in social sensing applications is challenged by privacy threats. Large-scale access to citizens’ data allow surveillance and discriminatory actions that may result in segregation phenomena in society. On the contrary are the benefits of accurate computing analytics required for more informed decision-making, more effective policies and regulation of techno-socio-economic systems supported by ‘Internet-of Things’ technologies. In contrast to earlier work that either focuses on privacy protection or Big Data analytics, this paper proposes a self-regulatory information sharing system that bridges this gap. This is achieved by modeling information sharing as a supply-demand system run by computational markets. On the supply side lie the citizens that make incentivized but self-determined decisions about the level of information they share. On the demand side stand data aggregators that provide rewards to citizens to receive the required data for accurate analytics. The system is empirically evaluated with two real-world datasets from two application domains: (i) Smart Grids and (ii) mobile phone sensing. Experimental results quantify trade-offs between privacy-preservation, accuracy of analytics and costs from the provided rewards under different experimental settings. Findings show a higher privacy-preservation that depends on the number of participating citizens and the type of data summarized. Moreover, analytics with summarization data tolerate high local errors without a significant influence on the global accuracy. In other words, local errors cancel out. Rewards can be optimized to be fair so that citizens with more significant sharing of information receive higher rewards. All these findings motivate a new paradigm of truly decentralized and ethical data analytics.ISSN:2193-112

    A Sensor-based Learning Public Health System

    Get PDF
    New smartphone technologies for the first time provide a platform for a new type of on-person, public health data collection and also a new type of informational public health intervention. In such interventions, it is the device via automatically collecting data relevant to the individual’s health that triggers the receipt of an informational public health intervention relevant to that individual. This will enable far more targeted and personalized public health interventions than previously possible. However, furthermore, sensor-based public health data collection, combined with such informational public health interventions provides the underlying platform for a novel and powerful new form of learning public health system. In this paper we provide an architecture for such a sensor-based learning public health system, in particular one which maintains the anonymity of its individual participants, we describe its algorithm for iterative public health intervention improvement, and examine and provide an evaluation of its anonymity maintaining characteristics

    Incentivized Privacy-Preserving Participatory Sensing

    Get PDF

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    Crowd-Based Learning of Spatial Fields for the Internet of Things: From Harvesting of Data to Inference

    Get PDF
    open4siThe knowledge of spatial distributions of physical quantities, such as radio-frequency (RF) interference, pollution, geomagnetic field magnitude, temperature, humidity, audio, and light intensity, will foster the development of new context-aware applications. For example, knowing the distribution of RF interference might significantly improve cognitive radio systems [1], [2]. Similarly, knowing the spatial variations of the geomagnetic field could support autonomous navigation of robots (including drones) in factories and/or hazardous scenarios [3]. Other examples are related to the estimation of temperature gradients, detection of sources of RF signals, or percentages of certain chemical components. As a result, people could get personalized health-related information based on their exposure to sources of risks (e.g., chemical or pollution). We refer to these spatial distributions of physical quantities as spatial fields. All of the aforementioned examples have in common that learning the spatial fields requires a large number of sensors (agents) surveying the area [4], [5].embargoed_20190303Arias-De-Reyna, Eva; Closas, Pau; Dardari, Davide; Djuric, Petar M.Arias-De-Reyna, Eva; Closas, Pau; Dardari, Davide; Djuric, Petar M
    • …
    corecore