1,098 research outputs found

    Prismatic Algorithm for Discrete D.C. Programming Problems

    Full text link
    In this paper, we propose the first exact algorithm for minimizing the difference of two submodular functions (D.S.), i.e., the discrete version of the D.C. programming problem. The developed algorithm is a branch-and-bound-based algorithm which responds to the structure of this problem through the relationship between submodularity and convexity. The D.S. programming problem covers a broad range of applications in machine learning because this generalizes the optimization of a wide class of set functions. We empirically investigate the performance of our algorithm, and illustrate the difference between exact and approximate solutions respectively obtained by the proposed and existing algorithms in feature selection and discriminative structure learning

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Network part program approach based on the STEP-NC data structure for the machining of multiple fixture pallets

    Get PDF
    partially_open4noThe adoption of alternative process plans, that is, process plans that include alternative ways of machining a workpiece, can improve system performance through a better management of resource availability. Unfortunately even if this opportunity is deeply analysed in literature, it is not frequently adopted in real manufacturing practice. In order to fill this gap, this article presents the network part program (NPP) approach for the machining of multiple fixture pallets. The NPP approach is based on the STEP-NC data structure which supports nonlinear sequences of operations and process flexibility. In the NPP approach, a machining system supervisor defines the machining sequences and generates the related part programs just before the execution of the pallet. This article provides an approach with high scientific value and industrial applicability based on the integration of new and existing process planning methods. A real industrial case study is considered in order to show that in real applications the final quality is unaffected by the change of the sequence of the operations due to the employment of nonlinear process plans. Since the results appear very encouraging, the proposed approach is a possible solution to accelerate the adoption of nonlinear process planning in real manufacturing practice.S. Borgia; S. Pellegrinelli; S. Petro'; T. TolioBorgia, Stefano; Pellegrinelli, Stefania; Petro', Stefano; Tolio, TULLIO ANTONIO MARI

    ICASE/LaRC Workshop on Adaptive Grid Methods

    Get PDF
    Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field

    Task oriented robotics

    Get PDF

    Automatic Analyzer for Iterative Design

    Get PDF
    The Office of Naval Research Department Of The Navy Contract Nonr 1834 (03) Project NR-064-18

    Passive exercise adaptation for ankle rehabilitation based on learning control framework

    Get PDF
    This article belongs to the Special Issue Human-Robot Interaction.Ankle injuries are among the most common injuries in sport and daily life. However, for their recovery, it is important for patients to perform rehabilitation exercises. These exercises are usually done with a therapist's guidance to help strengthen the patient's ankle joint and restore its range of motion. However, in order to share the load with therapists so that they can offer assistance to more patients, and to provide an efficient and safe way for patients to perform ankle rehabilitation exercises, we propose a framework that integrates learning techniques with a 3-PRS parallel robot, acting together as an ankle rehabilitation device. In this paper, we propose to use passive rehabilitation exercises for dorsiflexion/plantar flexion and inversion/eversion ankle movements. The therapist is needed in the first stage to design the exercise with the patient by teaching the robot intuitively through learning from demonstration. We then propose a learning control scheme based on dynamic movement primitives and iterative learning control, which takes the designed exercise trajectory as a demonstration (an input) together with the recorded forces in order to reproduce the exercise with the patient for a number of repetitions defined by the therapist. During the execution, our approach monitors the sensed forces and adapts the trajectory by adding the necessary offsets to the original trajectory to reduce its range without modifying the original trajectory and subsequently reducing the measured forces. After a predefined number of repetitions, the algorithm restores the range gradually, until the patient is able to perform the originally designed exercise. We validate the proposed framework with both real experiments and simulation using a Simulink model of the rehabilitation parallel robot that has been developed in our lab

    Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework

    Full text link
    [EN] Ankle injuries are among the most common injuries in sport and daily life. However, for their recovery, it is important for patients to perform rehabilitation exercises. These exercises are usually done with a therapist's guidance to help strengthen the patient's ankle joint and restore its range of motion. However, in order to share the load with therapists so that they can offer assistance to more patients, and to provide an efficient and safe way for patients to perform ankle rehabilitation exercises, we propose a framework that integrates learning techniques with a 3-PRS parallel robot, acting together as an ankle rehabilitation device. In this paper, we propose to use passive rehabilitation exercises for dorsiflexion/plantar flexion and inversion/eversion ankle movements. The therapist is needed in the first stage to design the exercise with the patient by teaching the robot intuitively through learning from demonstration. We then propose a learning control scheme based on dynamic movement primitives and iterative learning control, which takes the designed exercise trajectory as a demonstration (an input) together with the recorded forces in order to reproduce the exercise with the patient for a number of repetitions defined by the therapist. During the execution, our approach monitors the sensed forces and adapts the trajectory by adding the necessary offsets to the original trajectory to reduce its range without modifying the original trajectory and subsequently reducing the measured forces. After a predefined number of repetitions, the algorithm restores the range gradually, until the patient is able to perform the originally designed exercise. We validate the proposed framework with both real experiments and simulation using a Simulink model of the rehabilitation parallel robot that has been developed in our lab.This work has been partially funded by the FEDER-CICYT project with reference DPI2017-84201-R (Integracion de modelos biomecanicos en el desarrollo y operacion de robots rehabilitadores reconfigurables) financed by Ministerio de Economia, Industria e Innovacion (Spain).Abu-Dakka, FJ.; Valera Fernández, Á.; Escalera, JA.; Abderrahim, M.; Page Del Pozo, AF.; Mata Amela, V. (2020). Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework. Sensors. 20(21):1-23. https://doi.org/10.3390/s20216215S123202
    corecore