69,775 research outputs found

    Quantitative games with interval objectives

    Get PDF
    Traditionally quantitative games such as mean-payoff games and discount sum games have two players -- one trying to maximize the payoff, the other trying to minimize it. The associated decision problem, "Can Eve (the maximizer) achieve, for example, a positive payoff?" can be thought of as one player trying to attain a payoff in the interval (0,)(0,\infty). In this paper we consider the more general problem of determining if a player can attain a payoff in a finite union of arbitrary intervals for various payoff functions (liminf, mean-payoff, discount sum, total sum). In particular this includes the interesting exact-value problem, "Can Eve achieve a payoff of exactly (e.g.) 0?"Comment: Full version of CONCUR submissio

    Positional Determinacy of Games with Infinitely Many Priorities

    Get PDF
    We study two-player games of infinite duration that are played on finite or infinite game graphs. A winning strategy for such a game is positional if it only depends on the current position, and not on the history of the play. A game is positionally determined if, from each position, one of the two players has a positional winning strategy. The theory of such games is well studied for winning conditions that are defined in terms of a mapping that assigns to each position a priority from a finite set. Specifically, in Muller games the winner of a play is determined by the set of those priorities that have been seen infinitely often; an important special case are parity games where the least (or greatest) priority occurring infinitely often determines the winner. It is well-known that parity games are positionally determined whereas Muller games are determined via finite-memory strategies. In this paper, we extend this theory to the case of games with infinitely many priorities. Such games arise in several application areas, for instance in pushdown games with winning conditions depending on stack contents. For parity games there are several generalisations to the case of infinitely many priorities. While max-parity games over omega or min-parity games over larger ordinals than omega require strategies with infinite memory, we can prove that min-parity games with priorities in omega are positionally determined. Indeed, it turns out that the min-parity condition over omega is the only infinitary Muller condition that guarantees positional determinacy on all game graphs

    Locally Self-Adjusting Skip Graphs

    Full text link
    We present a distributed self-adjusting algorithm for skip graphs that minimizes the average routing costs between arbitrary communication pairs by performing topological adaptation to the communication pattern. Our algorithm is fully decentralized, conforms to the CONGEST\mathcal{CONGEST} model (i.e. uses O(logn)O(\log n) bit messages), and requires O(logn)O(\log n) bits of memory for each node, where nn is the total number of nodes. Upon each communication request, our algorithm first establishes communication by using the standard skip graph routing, and then locally and partially reconstructs the skip graph topology to perform topological adaptation. We propose a computational model for such algorithms, as well as a yardstick (working set property) to evaluate them. Our working set property can also be used to evaluate self-adjusting algorithms for other graph classes where multiple tree-like subgraphs overlap (e.g. hypercube networks). We derive a lower bound of the amortized routing cost for any algorithm that follows our model and serves an unknown sequence of communication requests. We show that the routing cost of our algorithm is at most a constant factor more than the amortized routing cost of any algorithm conforming to our computational model. We also show that the expected transformation cost for our algorithm is at most a logarithmic factor more than the amortized routing cost of any algorithm conforming to our computational model
    corecore