3,116 research outputs found

    Dynamic approach to solve the daily drayage problem with travel time uncertainty

    Get PDF
    The intermodal transport chain can become more e cient by means of a good organization of drayage movements. Drayage in intermodal container terminals involves the pick up and delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the di erent vehicles, often with the presence of time windows. This scheduling has traditionally been done once a day and, under these conditions, any unexpected event could cause timetable delays. We propose to use the real-time knowledge about vehicle position to solve this problem, which permanently allows the planner to reassign tasks in case the problem conditions change. This exact knowledge of the position of the vehicles is possible using a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance

    An improved adaptive genetic algorithm for mobile robot path planning analogous to TSP with constraints on city priorities

    Get PDF
    The material transportation planning with a mobile robot can be regarded as the ordered clustered traveling salesman problem. To solve such problems with different priorities at stations, an improved adaptive genetic simulated annealing algorithm is proposed. Firstly, the priority matrix is defined according to station priorities. Based on standard genetic algorithm, the generating strategy of the initial population is improved to prevent the emergence of non-feasible solutions, and an improved adaptive operator is introduced to improve the population ability for escaping local optimal solutions and avoid premature phenomena. Moreover, to speed up the convergence of the proposed algorithm, the simulated annealing strategy is utilized in mutation operations. The experimental results indicate that the proposed algorithm has the characteristics of strong ability to avoid local optima and the faster convergence speed
    • …
    corecore