192 research outputs found

    A credit-based approach to scalable video transmission over a peer-to-peer social network

    Get PDF
    PhDThe objective of the research work presented in this thesis is to study scalable video transmission over peer-to-peer networks. In particular, we analyse how a credit-based approach and exploitation of social networking features can play a significant role in the design of such systems. Peer-to-peer systems are nowadays a valid alternative to the traditional client-server architecture for the distribution of multimedia content, as they transfer the workload from the service provider to the final user, with a subsequent reduction of management costs for the former. On the other hand, scalable video coding helps in dealing with network heterogeneity, since the content can be tailored to the characteristics or resources of the peers. First of all, we present a study that evaluates subjective video quality perceived by the final user under different transmission scenarios. We also propose a video chunk selection algorithm that maximises received video quality under different network conditions. Furthermore, challenges in building reliable peer-to-peer systems for multimedia streaming include optimisation of resource allocation and design mechanisms based on rewards and punishments that provide incentives for users to share their own resources. Our solution relies on a credit-based architecture, where peers do not interact with users that have proven to be malicious in the past. Finally, if peers are allowed to build a social network of trusted users, they can share the local information they have about the network and have a more complete understanding of the type of users they are interacting with. Therefore, in addition to a local credit, a social credit or social reputation is introduced. This thesis concludes with an overview of future developments of this research work

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    User-Centric Quality of Service Provisioning in IP Networks

    Get PDF
    The Internet has become the preferred transport medium for almost every type of communication, continuing to grow, both in terms of the number of users and delivered services. Efforts have been made to ensure that time sensitive applications receive sufficient resources and subsequently receive an acceptable Quality of Service (QoS). However, typical Internet users no longer use a single service at a given point in time, as they are instead engaged in a multimedia-rich experience, comprising of many different concurrent services. Given the scalability problems raised by the diversity of the users and traffic, in conjunction with their increasing expectations, the task of QoS provisioning can no longer be approached from the perspective of providing priority to specific traffic types over coexisting services; either through explicit resource reservation, or traffic classification using static policies, as is the case with the current approach to QoS provisioning, Differentiated Services (Diffserv). This current use of static resource allocation and traffic shaping methods reveals a distinct lack of synergy between current QoS practices and user activities, thus highlighting a need for a QoS solution reflecting the user services. The aim of this thesis is to investigate and propose a novel QoS architecture, which considers the activities of the user and manages resources from a user-centric perspective. The research begins with a comprehensive examination of existing QoS technologies and mechanisms, arguing that current QoS practises are too static in their configuration and typically give priority to specific individual services rather than considering the user experience. The analysis also reveals the potential threat that unresponsive application traffic presents to coexisting Internet services and QoS efforts, and introduces the requirement for a balance between application QoS and fairness. This thesis proposes a novel architecture, the Congestion Aware Packet Scheduler (CAPS), which manages and controls traffic at the point of service aggregation, in order to optimise the overall QoS of the user experience. The CAPS architecture, in contrast to traditional QoS alternatives, places no predetermined precedence on a specific traffic; instead, it adapts QoS policies to each individual’s Internet traffic profile and dynamically controls the ratio of user services to maintain an optimised QoS experience. The rationale behind this approach was to enable a QoS optimised experience to each Internet user and not just those using preferred services. Furthermore, unresponsive bandwidth intensive applications, such as Peer-to-Peer, are managed fairly while minimising their impact on coexisting services. The CAPS architecture has been validated through extensive simulations with the topologies used replicating the complexity and scale of real-network ISP infrastructures. The results show that for a number of different user-traffic profiles, the proposed approach achieves an improved aggregate QoS for each user when compared with Best effort Internet, Traditional Diffserv and Weighted-RED configurations. Furthermore, the results demonstrate that the proposed architecture not only provides an optimised QoS to the user, irrespective of their traffic profile, but through the avoidance of static resource allocation, can adapt with the Internet user as their use of services change.France Teleco

    Scalable download protocols

    Get PDF
    Scalable on-demand content delivery systems, designed to effectively handle increasing request rates, typically use service aggregation or content replication techniques. Service aggregation relies on one-to-many communication techniques, such as multicast, to efficiently deliver content from a single sender to multiple receivers. With replication, multiple geographically distributed replicas of the service or content share the load of processing client requests and enable delivery from a nearby server.Previous scalable protocols for downloading large, popular files from a single server include batching and cyclic multicast. Analytic lower bounds developed in this thesis show that neither of these protocols consistently yields performance close to optimal. New hybrid protocols are proposed that achieve within 20% of the optimal delay in homogeneous systems, as well as within 25% of the optimal maximum client delay in all heterogeneous scenarios considered.In systems utilizing both service aggregation and replication, well-designed policies determining which replica serves each request must balance the objectives of achieving high locality of service, and high efficiency of service aggregation. By comparing classes of policies, using both analysis and simulations, this thesis shows that there are significant performance advantages in using current system state information (rather than only proximities and average loads) and in deferring selection decisions when possible. Most of these performance gains can be achieved using only “local” (rather than global) request information.Finally, this thesis proposes adaptations of already proposed peer-assisted download techniques to support a streaming (rather than download) service, enabling playback to begin well before the entire media file is received. These protocols split each file into pieces, which can be downloaded from multiple sources, including other clients downloading the same file. Using simulations, a candidate protocol is presented and evaluated. The protocol includes both a piece selection technique that effectively mediates the conflict between achieving high piece diversity and the in-order requirements of media file playback, as well as a simple on-line rule for deciding when playback can safely commence

    EXPERIMENTS ON VIDEO STREAMING OVER COMPUTER NETWORKS

    Get PDF
    Video traffic (including streaming video service) is dominating the Internet traffic today. Video can be streamed using a dedicated server, a content delivery network (CDN), or peer-to-peer (P2P) overlays across a network. Video can be transmitted in multiple formats and at different resolutions. Video is also being distributed to a variety of devices (fixed and mobile)

    A delay-based aggregate rate control for P2P streaming systems

    Get PDF
    In this paper we consider mesh based P2P streaming systems focusing on the problem of regulating peer transmission rate to match the system demand while not overloading each peer upload link capacity. We propose Hose Rate Control (HRC), a novel scheme to control the speed at which peers offer chunks to other peers, ultimately controlling peer uplink capacity utilization. This is of critical importance for heterogeneous scenarios like the one faced in the Internet, where peer upload capacity is unknown and varies widely. HRC nicely adapts to the actual peer available upload bandwidth and system demand, so that Quality of Experience is greatly enhanced. To support our claims we present both simulations and actual experiments involving more than 1000 peers to assess performance in real scenarios. Results show that HRC consistently outperforms the Quality of Experience achieved by non-adaptive scheme

    Design and evaluation of load balancing algorithms in P2P streaming.

    Get PDF
    Wang, Yongzhi.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (p.68-72).Abstract also in Chinese.Abstract --- p.iAcknowledgement --- p.iiChapter 1 --- Introduction --- p.1Chapter 2 --- Abstract Model --- p.7Chapter 2.1 --- Request allocation problem --- p.7Chapter 2.2 --- Neighbor selection problem --- p.11Chapter 3 --- Simulation Model --- p.14Chapter 4 --- Load Balancing Algorithms --- p.18Chapter 4.1 --- Request allocation --- p.18Chapter 4.2 --- Neighbor selection algorithms --- p.24Chapter 4.2.1 --- What to measure? --- p.24Chapter 4.2.2 --- Timeout-based neighbor selection algorithms --- p.25Chapter 4.2.3 --- Periodic neighbor selection algorithms --- p.33Chapter 4.2.4 --- Comparison: Timeout-based versus Periodical neighbor selection algorithms --- p.39Chapter 4.3 --- Further experiments --- p.41Chapter 4.3.1 --- Request window size --- p.41Chapter 4.3.2 --- Impact of K --- p.42Chapter 4.3.3 --- Adaptive adjustment of the neighbor selection period --- p.43Chapter 4.3.4 --- Performance with adequate bandwidth --- p.45Chapter 5 --- Minimizing Server´ةs Load --- p.49Chapter 6 --- Background Study --- p.56Chapter 6.1 --- P2P content distribution system --- p.56Chapter 6.1.1 --- P2P File sharing system --- p.56Chapter 6.1.2 --- P2P streaming system --- p.59Chapter 6.1.3 --- P2P Video on Demand system --- p.61Chapter 6.2 --- Congestion control --- p.62Chapter 7 --- Conclusion --- p.67Bibliography --- p.6
    • …
    corecore