241 research outputs found

    A Novel Framework for Software Defined Wireless Body Area Network

    Full text link
    Software Defined Networking (SDN) has gained huge popularity in replacing traditional network by offering flexible and dynamic network management. It has drawn significant attention of the researchers from both academia and industries. Particularly, incorporating SDN in Wireless Body Area Network (WBAN) applications indicates promising benefits in terms of dealing with challenges like traffic management, authentication, energy efficiency etc. while enhancing administrative control. This paper presents a novel framework for Software Defined WBAN (SDWBAN), which brings the concept of SDN technology into WBAN applications. By decoupling the control plane from data plane and having more programmatic control would assist to overcome the current lacking and challenges of WBAN. Therefore, we provide a conceptual framework for SDWBAN with packet flow model and a future direction of research pertaining to SDWBAN.Comment: Presented on 8th International Conference on Intelligent Systems, Modelling and Simulatio

    EOCC-TARA for Software Defined WBAN

    Get PDF
    Wireless Body Area Network (WBAN) is a promising cost-effective technology for the privacy confined military applications and healthcare applications like remote health monitoring, telemedicine, and e-health services. The use of a Software-Defined Network (SDN) approach improves the control and management processes of the complex structured WBANs and also provides higher flexibility and dynamic network structure. To seamless routing performance in SDN-based WBAN, the energy-efficiency problems must be tackled effectively. The main contribution of this paper is to develop a novel Energy Optimized Congestion Control based on Temperature Aware Routing Algorithm (EOCC-TARA) using Enhanced Multi-objective Spider Monkey Optimization (EMSMO) for SDN-based WBAN. This algorithm overcomes the vital challenges, namely energy-efficiency, congestion-free communication, and reducing adverse thermal effects in WBAN routing. First, the proposed EOCC-TARA routing algorithm considers the effects of temperature due to the thermal dissipation of sensor nodes and formulates a strategy to adaptively select the forwarding nodes based on temperature and energy. Then the congestion avoidance concept is added with the energy-efficiency, link reliability, and path loss for modeling the cost function based on which the EMSMO provides the optimal routing. Simulations were performed, and the evaluation results showed that the proposed EOCC-TARA routing algorithm has superior performance than the traditional routing approaches in terms of energy consumption, network lifetime, throughput, temperature control, congestion overhead, delay, and successful transmission rate

    Improvement of Quality of Service Parameters in Dynamic and Heterogeneous WBAN

    Get PDF
    With growth in population and diseases, there is a need for monitoring and curing of patients with low cost for various health issues. Due to life threatening conditions, loss-free and timely sending of data is an essential factor for healthcare WBAN. Health data needs to transmit through reliable connection and with minimum delay, but designing a reliable, and congestion and delay free transport protocol is a challenging area in Wireless Body Area Networks (WBANs). Generally, transport layer is responsible for congestion control and reliable packet delivery. Congestion is a critical issue in the healthcare system. It not only increases loss and delay ratio but also raise a number of retransmissions and packet drop rates, which hampers Quality of Service (QoS). Thus, to meet the QoS requirements of healthcare WBANs, a reliable and fair transport protocol is mandatory. This motivates us to design a new protocol, which provides loss, delay and congestion free transmission of heterogeneous data. In this paper, we present a Dynamic priority based Quality of Service management protocol which not only controls the congestion in the network but also provides a reliable transmission with timely delivery of the packet

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    QoS in Body Area Networks: A survey

    Get PDF

    A priority-based energy efficient multi-hop routing protocol with congestion control for wireless body area network

    Get PDF
    Wireless Body Area Networks (WBANs) are advanced and integrated monitoring networks for healthcare applications. In these networks, different types of Biomedical Sensor Nodes (BSNs) are used to monitor physiological parameters of the human body. The BSNs have limited resources such as energy, memory and computation power. These limited resources make the network challenging especially in terms of energy consumption. Efficient routing schemes are required to save the energy during communication processes. Additionally, the BSNs generate sensitive and non-sensitive data packets, which need to be routed according to their priority. In order to address these problems, a priority-based Energy Efficient Multihop Routing protocol with congestion control (3EMR) for wireless body area network was developed that comprises of three different schemes. First, an Optimal Next-hop Selection (ONS) scheme was developed based on the cost function of routing parameters to dynamically select best next-hop for forwarding data packets. Second, a Priority Based Routing (PBR) scheme was developed to forward data packets according to data priority, which is based on sensitivity of the data with regards to patience’s life. Third, a Congestion Avoidance and Mitigation (CAM) scheme was developed to save energy consumption and packet loss due to congestion by considering packet flow adjustment and congestion zone avoidance based strategy. It improvement is benchmarked against related solutions, and they are Healthcare-aware Optimized Congestion Avoidance (HOCA), Differentiated Rate control for Congestion (DRC), Priority based Cross Layer Routing (PCLR), Even Energy-consumption and Backside Routing (EEBR), and Energy Efficient Routing (EER) scheme. The simulation results demonstrated that the 3EMR scheme achieved significant improvement in terms of increased network lifetime by 31.4%, increased throughput by 33.2%, reduced packet loss 30.9%, increased packet delivery ratio by 21.1% and reduced energy consumption 26.8%. Thus, the proposed routing scheme has proven to be an energy efficient solution for data communication in wireless body area networks

    TAEO-A thermal aware & energy optimized routing protocol for wireless body area networks

    Get PDF
    Wireless Body Area Networks (WBANs) are in the spotlight of researchers and engineering industries due to many applications. Remote health monitoring for general as well as military purposes where tiny sensors are attached or implanted inside the skin of the body to sense the required attribute is particularly prominent. To seamlessly accomplish this procedure, there are various challenges, out of which temperature control to reduce thermal effects and optimum power consumption to reduce energy wastage are placed at the highest priority. Regular and consistent operation of a sensor node for a long-time result in a rising of the temperature of respective tissues, where it is attached or implanted. This temperature rise has harmful effects on human tissues, which may lead to the tissue damage. In this paper, a Temperate Aware and Energy Optimized (TAEO) routing protocol is proposed that not only deals with the thermal aspects and hot spot problem, but also extends the stability and lifetime of a network. Analytical simulations are conducted, and the results depict better performance in terms of the network lifetime, throughput, energy preservation, and temperature control with respect to state of the art WBAN protocols

    Congestion Control By Using Adaptive Data Rate Technique with High Bandwidth in Wireless Sensor Networks

    Get PDF
    Wireless sensor network one of the most favourite topic for researcher to explore. Wireless sensor networks is very useful so more number of sensor nodes are deploying and large number of data being sensed and collected. To meet the expectations of demands networks should be in safe and good state. Problems in wireless sensor networks are congestion and wastage of energy. So it's necessary to control the congestion and minimize the energy consumption. Congestion causes heavy data loss and unnecessary retransmission of data. Congestion causes by many reasons. There are some techniques and algorithms which can control the congestion at some degree. Here we have suggested technique which can do a Congestion Control with High bandwidth in networks. Amount of congestion in network can be decided by maximum and minimum threshold values that can assign in initial phase of algorithm

    An Optimal Backoff Time-Based Internetwork Interference Mitigation Method in Wireless Body Area Network

    Get PDF
    When multiple Wireless Body Area Networks (WBANs) are aggregated, the overlapping region of their communications will result in internetwork interference, which could impose severe impacts on the reliability of WBAN performance. Therefore, how to mitigate the internetwork interference becomes the key problem to be solved urgently in practical applications of WBAN. However, most of the current researches on internetwork interference focus on traditional cellular networks and large-scale wireless sensor networks. In this paper, an Optimal Backoff Time Interference Mitigation Algorithm (OBTIM) is proposed. This method performs rescheduling or channel switching when the performance of the WBANs falls below tolerance, utilizing the cell neighbour list established by the beacon method. Simulation results show that the proposed method improves the channel utilization and the network throughput, and in the meantime, reduces the collision probability and energy consumption, when compared with the contention-based beacon schedule scheme
    corecore