1,054 research outputs found

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    A novel class of scheduling policies for the stochastic resource-constrained project scheduling problem.

    Get PDF
    We study the resource-constrained project scheduling problem with stochastic activity durations. We introduce a new class of scheduling policies for this problem, which make a number of a-priori sequencing decisions in a pre-processing phase, while the remaining decisions are made dynamically during project execution. The pre-processing decisions entail the addition of precedence constraints to the scheduling instance, hereby resolving some potential resource conflicts. We compare the performance of this new class with existing scheduling policies for the stochastic resource-constrained project scheduling problem, and we observe that the new class is significantly better when the variability in the activity durations is medium to high.Project scheduling; Uncertainty; Stochastic activity durations; Scheduling policies;

    Four payment models for the multi-mode resource constrained project scheduling problem with discounted cash flows

    Get PDF
    In this paper, the multi-mode resource constrained project scheduling problem with discounted cash flows is considered. The objective is the maximization of the net present value of all cash flows. Time value of money is taken into consideration, and cash in- and outflows are associated with activities and/or events. The resources can be of renewable, nonrenewable, and doubly constrained resource types. Four payment models are considered: Lump sum payment at the terminal event, payments at prespecified event nodes, payments at prespecified time points and progress payments. For finding solutions to problems proposed, a genetic algorithm (GA) approach is employed, which uses a special crossover operator that can exploit the multi-component nature of the problem. The models are investigated at the hand of an example problem. Sensitivity analyses are performed over the mark up and the discount rate. A set of 93 problems from literature are solved under the four different payment models and resource type combinations with the GA approach employed resulting in satisfactory computation times. The GA approach is compared with a domain specific heuristic for the lump sum payment case with renewable resources and is shown to outperform it

    Parallel scheduling of task trees with limited memory

    Get PDF
    This paper investigates the execution of tree-shaped task graphs using multiple processors. Each edge of such a tree represents some large data. A task can only be executed if all input and output data fit into memory, and a data can only be removed from memory after the completion of the task that uses it as an input data. Such trees arise, for instance, in the multifrontal method of sparse matrix factorization. The peak memory needed for the processing of the entire tree depends on the execution order of the tasks. With one processor the objective of the tree traversal is to minimize the required memory. This problem was well studied and optimal polynomial algorithms were proposed. Here, we extend the problem by considering multiple processors, which is of obvious interest in the application area of matrix factorization. With multiple processors comes the additional objective to minimize the time needed to traverse the tree, i.e., to minimize the makespan. Not surprisingly, this problem proves to be much harder than the sequential one. We study the computational complexity of this problem and provide inapproximability results even for unit weight trees. We design a series of practical heuristics achieving different trade-offs between the minimization of peak memory usage and makespan. Some of these heuristics are able to process a tree while keeping the memory usage under a given memory limit. The different heuristics are evaluated in an extensive experimental evaluation using realistic trees.Dans ce rapport, nous nous intéressons au traitement d'arbres de tâches par plusieurs processeurs. Chaque arête d'un tel arbre représente un gros fichier d'entrée/sortie. Une tâche peut être traitée seulement si l'ensemble de ses fichiers d'entrée et de sortie peut résider en mémoire, et un fichier ne peut être retiré de la mémoire que lorsqu'il a été traité. De tels arbres surviennent, par exemple, lors de la factorisation de matrices creuses par des méthodes multifrontales. La quantité de mémoire nécessaire dépend de l'ordre de traitement des tâches. Avec un seul processeur, l'objectif est naturellement de minimiser la quantité de mémoire requise. Ce problème a déjà été étudié et des algorithmes polynomiaux ont été proposés. Nous étendons ce problème en considérant plusieurs processeurs, ce qui est d'un intérêt évident pour le problème de la factorisation de grandes matrices. Avec plusieurs processeurs se pose également le problème de la minimisation du temps nécessaire pour traiter l'arbre. Nous montrons que comme attendu, ce problème est bien plus compliqué que dans le cas séquentiel. Nous étudions la complexité de ce problème et nous fournissons des résultats d'inaproximabilité, même dans le cas de poids unitaires. Nous proposons plusieurs heuristiques qui obtiennent différents compromis entre mémoire et temps d'exécution. Certaines d'entre elles sont capables de traiter l'arbre tout en gardant la consommation mémoire inférieure à une limite donnée. Nous analysons les performances de toutes ces heuristiques par une large campagne de simulations utilisant des arbres réalistes

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    Solution and quality robust project scheduling: a methodological framework.

    Get PDF
    The vast majority of the research efforts in project scheduling over the past several years has concentrated on the development of exact and suboptimal procedures for the generation of a baseline schedule assuming complete information and a deterministic environment. During execution, however, projects may be the subject of considerable uncertainty, which may lead to numerous schedule disruptions. Predictive-reactive scheduling refers to the process where a baseline schedule is developed prior to the start of the project and updated if necessary during project execution. It is the objective of this paper to review possible procedures for the generation of proactive (robust) schedules, which are as well as possible protected against schedule disruptions, and for the deployment of reactive scheduling procedures that may be used to revise or re-optimize the baseline schedule when unexpected events occur. We also offer a methodological framework that should allow project management to identify the proper scheduling methodology for different project scheduling environments. Finally, we survey the basics of Critical Chain scheduling and indicate in which environments it is useful.Framework; Information; Management; Processes; Project management; Project scheduling; Project scheduling under uncertainty; Stability; Robust scheduling; Quality; Scheduling; Stability; Uncertainty;
    corecore