99 research outputs found

    Multiplicative consistency of intuitionistic reciprocal preference relations and its application to missing values estimation and consensus building

    Get PDF
    The mathematical modelling and representation of Tanino's multiplicative transitivity property to the case of intuitionistic reciprocal preference relations (IRPRs) is derived via Zadeh's extension principle and the representation theorem of fuzzy sets. This result guarantees the correct generalisation of the multiplicative transitivity property of reciprocal preference relations (RPRs), and it allows the multiplicative consistency (MC) property of IRPRs to be defined. The MC property used in decision making problems is threefold: (1) to develop a consistency based procedure to estimate missing values in IRPRs using an indirect chain of alternatives; (2) to quantify the consistency index (CI) of preferences provided by experts; and (3) to build a novel consistency based induced ordered weighted averaging (MC-IOWA) operator that associates a higher contribution in the aggregated value to the more consistent information. These three uses are implemented in developing a consensus model for GDM problems with incomplete IRPRs in which the level of agreement between the experts' individual IRPRs and the collective IRPR, which is referred here as the proximity index (PI), is combined with the CI to design a feedback mechanism to support experts to change some of their preference values using simple advice rules that aim at increasing the level of agreement while, at the same time, keeping a high degree of consistency. In the presence of missing information, the feedback mechanism implements the consistency based procedure to produce appropriate estimate values of the missing ones based on the given information provided by the experts. Under the assumption of constant CI values, the feedback mechanism is proved to converge to unanimous consensus when all experts are provided with recommendations and these are fully implemented. Additionally, visual representation of experts' consensus position within the group before and after implementing their feedback advice is also provided, which help an expert to revisit his evaluations and make changes if considered appropriate to achieve a higher consensus level. Finally, an IRPR fuzzy majority based quantifier-guided non-dominance degree based prioritisation method using the associated score reciprocal preference relation is proposed to obtain the final solution of consensus

    A dynamic feedback mechanism with attitudinal consensus threshold for minimum adjustment cost in group decision making

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This article presents a theoretical framework for a dynamic feedback mechanism in group decision making (GDM) by the implementation of an attitudinal consensus threshold (ACT) to generate recommendation advice for the identified inconsistent experts with the aim to increase consensus. The novelty of the approach resides in its ability to implement the ACT continuously, which allows the covering of all possible consensus states of the group from its minimum to maximum consensus degrees. Therefore, it can be flexibly applied to GDM problems with different consistency requirements. A sensitivity analysis method with visual simulation is proposed to support the checking of the numbers of experts involved in the feedback process and the minimum adjustment cost associated with the different ACT intervals. Experimental results show that an increase in the ACT value will lead to an increase in the number of experts and adjustment cost involved in the feedback process. Eventually, a numerical example is included to simulate the feedback process under various decision making scenarios with different ACT intervals

    Toward a successful clinical neuroproteomics : the 11th HUPO Brain Proteome Project Workshop 3 March, 2009, Kolymbari, Greece

    Get PDF
    The HUPO Brain Proteome Project (HUPO BPP) held its 11th workshop in Kolymbari on March 3, 2009. The principal aim of this project is to obtain a better understanding of neurodiseases and ageing, with the ultimate objective of discovering prognostic and diagnostic biomarkers, in addition to the development of novel diagnostic techniques and new medications. The attendees came together to discuss sub-project progress in the clinical neuroproteomics of human or mouse models of Alzheimer's and Parkinson's disease, and to define the needs and guidelines required for more advanced proteomics approaches. With the election of new steering committees, the members of the HUPO BPP elaborated an actual plan promoting activities, outcomes, and future directions of the HUPO BPP to acquire new funding and new participants
    • …
    corecore