11,470 research outputs found

    Content-prioritised video coding for British Sign Language communication.

    Get PDF
    Video communication of British Sign Language (BSL) is important for remote interpersonal communication and for the equal provision of services for deaf people. However, the use of video telephony and video conferencing applications for BSL communication is limited by inadequate video quality. BSL is a highly structured, linguistically complete, natural language system that expresses vocabulary and grammar visually and spatially using a complex combination of facial expressions (such as eyebrow movements, eye blinks and mouth/lip shapes), hand gestures, body movements and finger-spelling that change in space and time. Accurate natural BSL communication places specific demands on visual media applications which must compress video image data for efficient transmission. Current video compression schemes apply methods to reduce statistical redundancy and perceptual irrelevance in video image data based on a general model of Human Visual System (HVS) sensitivities. This thesis presents novel video image coding methods developed to achieve the conflicting requirements for high image quality and efficient coding. Novel methods of prioritising visually important video image content for optimised video coding are developed to exploit the HVS spatial and temporal response mechanisms of BSL users (determined by Eye Movement Tracking) and the characteristics of BSL video image content. The methods implement an accurate model of HVS foveation, applied in the spatial and temporal domains, at the pre-processing stage of a current standard-based system (H.264). Comparison of the performance of the developed and standard coding systems, using methods of video quality evaluation developed for this thesis, demonstrates improved perceived quality at low bit rates. BSL users, broadcasters and service providers benefit from the perception of high quality video over a range of available transmission bandwidths. The research community benefits from a new approach to video coding optimisation and better understanding of the communication needs of deaf people

    An investigation into gaze-based interaction techniques for people with motor impairments

    Get PDF
    The use of eye movements to interact with computers offers opportunities for people with impaired motor ability to overcome the difficulties they often face using hand-held input devices. Computer games have become a major form of entertainment, and also provide opportunities for social interaction in multi-player environments. Games are also being used increasingly in education to motivate and engage young people. It is important that young people with motor impairments are able to benefit from, and enjoy, them. This thesis describes a program of research conducted over a 20-year period starting in the early 1990's that has investigated interaction techniques based on gaze position intended for use by people with motor impairments. The work investigates how to make standard software applications accessible by gaze, so that no particular modification to the application is needed. The work divides into 3 phases. In the first phase, ways of using gaze to interact with the graphical user interfaces of office applications were investigated, designed around the limitations of gaze interaction. Of these, overcoming the inherent inaccuracies of pointing by gaze at on-screen targets was particularly important. In the second phase, the focus shifted from office applications towards immersive games and on-line virtual worlds. Different means of using gaze position and patterns of eye movements, or gaze gestures, to issue commands were studied. Most of the testing and evaluation studies in this, like the first, used participants without motor-impairments. The third phase of the work then studied the applicability of the research findings thus far to groups of people with motor impairments, and in particular,the means of adapting the interaction techniques to individual abilities. In summary, the research has shown that collections of specialised gaze-based interaction techniques can be built as an effective means of completing the tasks in specific types of games and how these can be adapted to the differing abilities of individuals with motor impairments

    Exploring Robot Teleoperation in Virtual Reality

    Get PDF
    This thesis presents research on VR-based robot teleoperation with a focus on remote environment visualisation in virtual reality, the effects of remote environment reconstruction scale in virtual reality on the human-operator's ability to control the robot and human-operator's visual attention patterns when teleoperating a robot from virtual reality. A VR-based robot teleoperation framework was developed, it is compatible with various robotic systems and cameras, allowing for teleoperation and supervised control with any ROS-compatible robot and visualisation of the environment through any ROS-compatible RGB and RGBD cameras. The framework includes mapping, segmentation, tactile exploration, and non-physically demanding VR interface navigation and controls through any Unity-compatible VR headset and controllers or haptic devices. Point clouds are a common way to visualise remote environments in 3D, but they often have distortions and occlusions, making it difficult to accurately represent objects' textures. This can lead to poor decision-making during teleoperation if objects are inaccurately represented in the VR reconstruction. A study using an end-effector-mounted RGBD camera with OctoMap mapping of the remote environment was conducted to explore the remote environment with fewer point cloud distortions and occlusions while using a relatively small bandwidth. Additionally, a tactile exploration study proposed a novel method for visually presenting information about objects' materials in the VR interface, to improve the operator's decision-making and address the challenges of point cloud visualisation. Two studies have been conducted to understand the effect of virtual world dynamic scaling on teleoperation flow. The first study investigated the use of rate mode control with constant and variable mapping of the operator's joystick position to the speed (rate) of the robot's end-effector, depending on the virtual world scale. The results showed that variable mapping allowed participants to teleoperate the robot more effectively but at the cost of increased perceived workload. The second study compared how operators used a virtual world scale in supervised control, comparing the virtual world scale of participants at the beginning and end of a 3-day experiment. The results showed that as operators got better at the task they as a group used a different virtual world scale, and participants' prior video gaming experience also affected the virtual world scale chosen by operators. Similarly, the human-operator's visual attention study has investigated how their visual attention changes as they become better at teleoperating a robot using the framework. The results revealed the most important objects in the VR reconstructed remote environment as indicated by operators' visual attention patterns as well as their visual priorities shifts as they got better at teleoperating the robot. The study also demonstrated that operators’ prior video gaming experience affects their ability to teleoperate the robot and their visual attention behaviours
    • …
    corecore