1,738 research outputs found

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    ADM : A Density And Priority Levels Aware Protocol For Broadcasting In Vehicular Ad-Hoc Networks

    No full text
    The broadcasting communication mode is widely used in Vehicular Ad~hoc Networks (VANETs). It is used for sending emergency messages, road-traffic information or to help routing protocols to determine routes. This communication mode is known to be hard to achieve efficiently since it depends on the network density. Indeed, broadcasting methods may cause network congestion if they are not well designed. This paper introduces a novel Autonomic Dissemination Method (ADM) which delivers messages in accordance with given message classes and network density levels. The proposed approach is based on two steps: an offline optimization process and an online adaptation to the network characteristics. ADM allows each node to dynamically adapt its broadcasting strategy not only with respect to the network density, but also according to the class of the message to send: emergency (high-priority), road-traffic (medium-priority) or either comfort message (low-priority). The ultimate goal of ADM is to make effective use of radio resources when there are many messages to send simultaneously. This approach increases the efficiency of the broadcast process in terms of message delivery ratio, latency and interferences reduction. The autonomic computing paradigm improves the robustness of protocols

    A topology-oblivious routing protocol for NDN-VANETs

    Full text link
    Vehicular Ad Hoc Networks (VANETs) are characterized by intermittent connectivity, which leads to failures of end-to-end paths between nodes. Named Data Networking (NDN) is a network paradigm that deals with such problems, since information is forwarded based on content and not on the location of the hosts. In this work, we propose an enhanced routing protocol of our previous topology-oblivious Multihop, Multipath, and Multichannel NDN for VANETs (MMM-VNDN) routing strategy that exploits several paths to achieve more efficient content retrieval. Our new enhanced protocol, i mproved MMM-VNDN (iMMM-VNDN), creates paths between a requester node and a provider by broadcasting Interest messages. When a provider responds with a Data message to a broadcast Interest message, we create unicast routes between nodes, by using the MAC address(es) as the distinct address(es) of each node. iMMM-VNDN extracts and thus creates routes based on the MAC addresses from the strategy layer of an NDN node. Simulation results show that our routing strategy performs better than other state of the art strategies in terms of Interest Satisfaction Rate, while keeping the latency and jitter of messages low

    SCALABLE MULTI-HOP DATA DISSEMINATION IN VEHICULAR AD HOC NETWORKS

    Get PDF
    Vehicular Ad hoc Networks (VANETs) aim at improving road safety and travel comfort, by providing self-organizing environments to disseminate traffic data, without requiring fixed infrastructure or centralized administration. Since traffic data is of public interest and usually benefit a group of users rather than a specific individual, it is more appropriate to rely on broadcasting for data dissemination in VANETs. However, broadcasting under dense networks suffers from high percentage of data redundancy that wastes the limited radio channel bandwidth. Moreover, packet collisions may lead to the broadcast storm problem when large number of vehicles in the same vicinity rebroadcast nearly simultaneously. The broadcast storm problem is still challenging in the context of VANET, due to the rapid changes in the network topology, which are difficult to predict and manage. Existing solutions either do not scale well under high density scenarios, or require extra communication overhead to estimate traffic density, so as to manage data dissemination accordingly. In this dissertation, we specifically aim at providing an efficient solution for the broadcast storm problem in VANETs, in order to support different types of applications. A novel approach is developed to provide scalable broadcast without extra communication overhead, by relying on traffic regime estimation using speed data. We theoretically validate the utilization of speed instead of the density to estimate traffic flow. The results of simulating our approach under different density scenarios show its efficiency in providing scalable multi-hop data dissemination for VANETs

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    A Taxonomy for Congestion Control Algorithms in Vehicular Ad Hoc Networks

    Full text link
    One of the main criteria in Vehicular Ad hoc Networks (VANETs) that has attracted the researchers' consideration is congestion control. Accordingly, many algorithms have been proposed to alleviate the congestion problem, although it is hard to find an appropriate algorithm for applications and safety messages among them. Safety messages encompass beacons and event-driven messages. Delay and reliability are essential requirements for event-driven messages. In crowded networks where beacon messages are broadcasted at a high number of frequencies by many vehicles, the Control Channel (CCH), which used for beacons sending, will be easily congested. On the other hand, to guarantee the reliability and timely delivery of event-driven messages, having a congestion free control channel is a necessity. Thus, consideration of this study is given to find a solution for the congestion problem in VANETs by taking a comprehensive look at the existent congestion control algorithms. In addition, the taxonomy for congestion control algorithms in VANETs is presented based on three classes, namely, proactive, reactive and hybrid. Finally, we have found the criteria in which fulfill prerequisite of a good congestion control algorithm
    corecore