29,008 research outputs found

    Affection not affliction: The role of emotions in information systems and organizational change

    Get PDF
    Most IS research in both the technical/rational and socio-technical traditions ignores or marginalizes the emotionally charged behaviours through which individuals engage in, and cope with the consequences of, IS practice and associated organizational change. Even within the small body of work that engages with emotions through particular conceptual efforts, affections are often conceived as a phenomenon to be eradicated – an affliction requiring a cure. In this paper, I argue that emotions are always implicated in our lived experiences, crucially influencing how we come to our beliefs about what is good or bad, right or wrong. I draw from the theoretical work of Michel Foucault to argue for elaborating current notions of IS innovation as a moral and political struggle in which individuals’ beliefs and feelings are constantly tested. Finally, I demonstrate these ideas by reference to a case study that had considerable emotional impact, and highlight the implications for future work

    Autonomic care platform for optimizing query performance

    Get PDF
    Background: As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods: We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients' data on the bedside screens. Results: The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions: We found that by controlled reduction of queries' executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Enable advanced QoS-aware network slicing in 5G networks for slice-based media use cases

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Media use cases for emergency services require mission-critical levels of reliability for the delivery of media-rich services, such as video streaming. With the upcoming deployment of the fifth generation (5G) networks, a wide variety of applications and services with heterogeneous performance requirements are expected to be supported, and any migration of mission-critical services to 5G networks presents significant challenges in the quality of service (QoS), for emergency service operators. This paper presents a novel SliceNet framework, based on advanced and customizable network slicing to address some of the highlighted challenges in migrating eHealth telemedicine services to 5G networks. An overview of the framework outlines the technical approaches in beyond the state-of-the-art network slicing. Subsequently, this paper emphasizes the design and prototyping of a media-centric eHealth use case, focusing on a set of innovative enablers toward achieving end-to-end QoS-aware network slicing capabilities, required by this demanding use case. Experimental results empirically validate the prototyped enablers and demonstrate the applicability of the proposed framework in such media-rich use cases.Peer ReviewedPostprint (author's final draft

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Codifying distributed cognition: a case study of emergency medical dispatch

    Get PDF
    The theory of distributed cognition is recognised as being relevant to system analysis and design but it has lacked visibility for practice. In this paper I develop a codified method of analysis based on distributed cognition which provides both structure and guidance in the use of the theory. The method developed comprises a systematic exploration and description of three functional levels of a system, namely, the information flow model, physical model, and artefact model. These levels are analytically separate but integrate in modelling the propagation and transformation of information within a system. The approach to developing this method has been exploratory and iterative: developing the understanding of distributed cognition and contextual study literature, with practical application to the London Ambulance Service Central Ambulance Control room context. The application of the method to this context reveals a number of design issues and concerns lending support to its use in these situations. Furthermore, this paper introduces a conception of how distributed cognition can be used to deliberate about potential design scenarios, which is a use of distributed cognition that has been alluded to but has not been explained elsewhere. This paper makes progress in narrowing the gap between distributed cognition theory and practice by adding guidance through a structured codified methodology. The method provides an accessible, practical approach to analysing team based systems using distributed cognition

    Intimate Partner Violence in Omaha

    Get PDF
    While the greater Omaha area has an extensive network of service providers addressing the needs of Intimate Partner Violence (IPV) survivors and has made great strides to increase collaboration and outreach, opportunities exist to enhance service delivery according to this report
    • …
    corecore