22,921 research outputs found

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation

    Schedulability, Response Time Analysis and New Models of P-FRP Systems

    Get PDF
    Functional Reactive Programming (FRP) is a declarative approach for modeling and building reactive systems. FRP has been shown to be an expressive formalism for building applications of computer graphics, computer vision, robotics, etc. Priority-based FRP (P-FRP) is a formalism that allows preemption of executing programs and guarantees real-time response. Since functional programs cannot maintain state and mutable data, changes made by programs that are preempted have to be rolled back. Hence in P-FRP, a higher priority task can preempt the execution of a lower priority task, but the preempted lower priority task will have to restart after the higher priority task has completed execution. This execution paradigm is called Abort-and-Restart (AR). Current real-time research is focused on preemptive of non-preemptive models of execution and several state-of-the-art methods have been developed to analyze the real-time guarantees of these models. Unfortunately, due to its transactional nature where preempted tasks are aborted and have to restart, the execution semantics of P-FRP does not fit into the standard definitions of preemptive or non-preemptive execution, and the research on the standard preemptive and non-preemptive may not applicable for the P-FRP AR model. Out of many research areas that P-FRP may demands, we focus on task scheduling which includes task and system modeling, priority assignment, schedulability analysis, response time analysis, improved P-FRP AR models, algorithms and corresponding software. In this work, we review existing results on P-FRP task scheduling and then present our research contributions: (1) a tighter feasibility test interval regarding the task release offsets as well as a linked list based algorithm and implementation for scheduling simulation; (2) P-FRP with software transactional memory-lazy conflict detection (STM-LCD); (3) a non-work-conserving scheduling model called Deferred Start; (4) a multi-mode P-FRP task model; (5) SimSo-PFRP, the P-FRP extension of SimSo - a SimPy-based, highly extensible and user friendly task generator and task scheduling simulator.Computer Science, Department o

    Energy Network Communications and Expandable Control Mechanisms

    Get PDF
    A modular, expandable network requiring little or no calibration is something that is well sought after and would offer great benefits when used for distributed energy generation. Intelligent and adaptive control of such a network offers stability of supply from intermittent sources which, to date, has been hard to achieve. Key to the effective use of such control systems is communications, specifically the exchange of commands and status information between the control systems and the attached devices. Power-line communications has been used in various applications for years and would offer a good mechanism for interconnecting devices on a power grid without the expense of laying new cabling. By using clusters of devices managed by an IEMS (Intelligent Energy Management System) in a branching network fashion (not unlike the grid itself) it would be possible to manage large numbers of devices and high speed with relatively low bandwidth usage increasing the usable range of transmission. Implications of this include improving network efficiency through managed power distribution and increased security of supply
    • …
    corecore