1,101 research outputs found

    Disruption Response Support For Inland Waterway Transportation

    Get PDF
    Motivated by the critical role of the inland waterways in the United States\u27 transportation system, this dissertation research focuses on pre- and post- disruption response support when the inland waterway navigation system is disrupted by a natural or manmade event. Following a comprehensive literature review, four research contributions are achieved. The first research contribution formulates and solves a cargo prioritization and terminal allocation problem (CPTAP) that minimizes total value loss of the disrupted barge cargoes on the inland waterway transportation system. It is tailored for maritime transportation stakeholders whose disaster response plans seek to mitigate negative economic and societal impacts. A genetic algorithm (GA)-based heuristic is developed and tested to solve realistically-sized instances of CPTAP. The second research contribution develops and examines a tabu search (TS) heuristic as an improved solution approach to CPTAP. Different from GA\u27s population search approach, the TS heuristic uses the local search to find improved solutions to CPTAP in less computation time. The third research contribution assesses cargo value decreasing rates (CVDRs) through a Value-focused Thinking based methodology. The CVDR is a vital parameter to the general cargo prioritization modeling as well as specifically for the CPTAP model for inland waterways developed here. The fourth research contribution develops a multi-attribute decision model based on the Analytic Hierarchy Process that integrates tangible and intangible factors in prioritizing cargo after an inland waterway disruption. This contribution allows for consideration of subjective, qualitative attributes in addition to the pure quantitative CPTAP approach explored in the first two research contributions

    Strategies for Prioritizing Needs for Accelerated Construction after Hazard Events

    Get PDF
    There is a need for rapid and responsive infrastructure repair and construction after natural disaster events such as hurricanes, wildfires, and tornadoes. These natural disasters often shut down basic infrastructure systems, as experienced recently in several Region 6 states as well as in other states around the country. Accelerated construction practices are often used in these situations to speed up the traditional, and often slow, project delivery process. However, after a natural disaster, several and different types of transportation infrastructure components are in need of inspection, rehabilitation or reconstruction, and transportation agencies are challenged with the task of prioritizing these accelerated projects. This study conducted an extensive literature review of current accelerated methods, infrastructure prioritization practices, and institutional barriers. Interviews with professionals from the transportation industry, including both private and public services, were conducted. Significant input from the railroad industry was used to compare private and public transportation systems responses after disasters. The results of this survey were used to quantify the importance of the accelerate methods and prioritization criteria, and which are the barriers to implement a prioritization model. Lastly, a decision support tool for prioritizing needs for accelerated construction after disaster events, specifically hurricanes and flooding, which commonly affect Region 6, was developed using the data collected

    Resilience assessment and planning in power distribution systems:Past and future considerations

    Full text link
    Over the past decade, extreme weather events have significantly increased worldwide, leading to widespread power outages and blackouts. As these threats continue to challenge power distribution systems, the importance of mitigating the impacts of extreme weather events has become paramount. Consequently, resilience has become crucial for designing and operating power distribution systems. This work comprehensively explores the current landscape of resilience evaluation and metrics within the power distribution system domain, reviewing existing methods and identifying key attributes that define effective resilience metrics. The challenges encountered during the formulation, development, and calculation of these metrics are also addressed. Additionally, this review acknowledges the intricate interdependencies between power distribution systems and critical infrastructures, including information and communication technology, transportation, water distribution, and natural gas networks. It is important to understand these interdependencies and their impact on power distribution system resilience. Moreover, this work provides an in-depth analysis of existing research on planning solutions to enhance distribution system resilience and support power distribution system operators and planners in developing effective mitigation strategies. These strategies are crucial for minimizing the adverse impacts of extreme weather events and fostering overall resilience within power distribution systems.Comment: 27 pages, 7 figures, submitted for review to Renewable and Sustainable Energy Review

    Optimizing the Prioritization of Natural Disaster Recovery Projects

    Get PDF
    Prioritizing reconstruction projects to recover a base from a natural disaster is a complicated and arduous process that involves all levels of leadership. The project prioritization phase of base recovery has a direct affect on the allocation of funding, the utilization of human resources, the obligation of projects, and the overall speed and efficiency of the recovery process. The focus of this research is the development of an objective and repeatable process for optimizing the project prioritization phase of the recovery effort. This work will focus on promoting objectivity in the project prioritizing process, improving the communication of the overall base recovery requirement, increasing efficiency in utilizing human and monetary resources, and the creation of a usable and repeatable decision-making tool based on Value-Focused Thinking and integer programming methods

    Modeling the values of private sector agents in multi-echelon humanitarian supply chains

    Get PDF
    © 2018 Elsevier B.V. Humanitarian organizations (HOs) increasingly look to engage private sector supply chains in achieving outcomes. The right engagement approach may require knowledge of agents' preferences across multi-echelon supply chains to align private sector value creation with humanitarian outcomes. We propose a multi-attribute value analysis (MAVA) framework to elucidate such preferences. We formalize this approach and apply it in collaboration with a HO pilot aiming to facilitate better private sector availability of malaria rapid diagnostic tests in Uganda. We demonstrate how HOs could use criteria weights and value functions from MAVA for project evaluation; in the process, we reveal business model insights for importers, distributors, and retailers in the pilot. We also show how MAVA facilitates the impact assessment of hypothetical options (i.e., combinations of products, services, and subsidies) to guide HO resource deployment. This paper offers the first attempt, to our knowledge, to develop quantitative measures for economic and non-economic objectives involving all agents in a multi-echelon supply chain, either humanitarian or commercial. We hope that this initial step stimulates further research to validate results and develop the framework proposed

    State-of-research on performance indicators for bridge quality control and management

    Get PDF
    The present study provides a review of the most diffused technical and non-technical performance indicators adopted worldwide by infrastructure owners. This work, developed within the European COST Action TU 1406—“Quality specifications for roadway bridges, standardization at a European level,” aims to summarize the state-of-art maintenance scheduling practices adopted by bridge owners, mainly focusing on the identification and classification of the most diffused performance indicators (PIs). PIs are subdivided in technical and non-technical ones: for this latter subclass, PIs are classified in environmental, social and economic-targeted. The study aims to be a reference for researchers dealing with performance-based assessments and bridge maintenance and management practices.Peer ReviewedPostprint (published version

    Information Technology Project Prioritization

    Get PDF
    This thesis provides a contemporary review of several topics related to information technology project prioritization, which will help managers create their own custom methodology. Traditional prioritization tools such as weighted average scoring models are used for simultaneous comparison of a number of proposed projects on multiple dimensions, to facilitate alignment with organization goals. These methods are used for the analysis of information related to the weight preferences over criteria used. If used correctly with this procedure, it is possible to bring forward an authentic figure of merit, which is used as the projects strategic potential. This allows the projects to be ranked and the highest-ranking projects to be considered for selection. Visual tools can then be used for selection of optimum project portfolio. The literature dedicates less time on tools beyond the selection of projects. This study aims to bridge this gap by proposing a final phase of project prioritization as Project Portfolio Management

    Critical Infrastructure Protection Metrics and Tools Papers and Presentations

    Get PDF
    Contents: Dr. Hilda Blanco: Prioritizing Assets in Critical Infrastructure Systems; Christine Poptanich: Strategic Risk Analysis; Geoffrey S. French/Jin Kim: Threat-Based Approach to Risk Case Study: Strategic Homeland Infrastructure Risk Assessment (SHIRA); William L. McGill: Techniques for Adversary Threat Probability Assessment; Michael R. Powers: The Mathematics of Terrorism Risk Stefan Pickl: SOA Approach to the IT-based Protection of CIP; Richard John: Probabilistic Project Management for a Terrorist Planning a Dirty Bomb Attack on a Major US Port; LCDR Brady Downs: Maritime Security Risk Analysis Model (MSRAM); Chel Stromgren: Terrorism Risk Assessment and Management (TRAM); Steve Lieberman: Convergence of CIP and COOP in Banking and Finance; Harry Mayer: Assessing the Healthcare and Public Health Sector with Model Based Risk Analysis; Robert Powell: How Much and On What? Defending and Deterring Strategic Attackers; Ted G. Lewis: Why Do Networks Cascade
    • …
    corecore