22 research outputs found

    Survey on Congestion Detection and Control in Connected Vehicles

    Full text link
    The dynamic nature of vehicular ad hoc network (VANET) induced by frequent topology changes and node mobility, imposes critical challenges for vehicular communications. Aggravated by the high volume of information dissemination among vehicles over limited bandwidth, the topological dynamics of VANET causes congestion in the communication channel, which is the primary cause of problems such as message drop, delay, and degraded quality of service. To mitigate these problems, congestion detection, and control techniques are needed to be incorporated in a vehicular network. Congestion control approaches can be either open-loop or closed loop based on pre-congestion or post congestion strategies. We present a general architecture of vehicular communication in urban and highway environment as well as a state-of-the-art survey of recent congestion detection and control techniques. We also identify the drawbacks of existing approaches and classify them according to different hierarchical schemes. Through an extensive literature review, we recommend solution approaches and future directions for handling congestion in vehicular communications

    Congestion Control in Vehicular Ad Hoc Networks

    Get PDF
    RÉSUMÉ Les réseaux Véhiculaires ad hoc (VANets) sont conçus pour permettre des communications sans fil fiables entre les nœuds mobiles à haute vitesse. Afin d'améliorer la performance des applications dans ce type de réseaux et garantir un environnement sûr et confortable pour ses utilisateurs, la Qualité de Service (QoS) doit être supportée dans ces réseaux. Le délai ainsi que les pertes de paquets sont deux principaux indicateurs de QoS qui augmentent de manière significative en raison de la congestion dans les réseaux. En effet, la congestion du réseau entraîne une saturation des canaux ainsi qu’une augmentation des collisions de paquets dans les canaux. Par conséquent, elle doit être contrôlée pour réduire les pertes de paquets ainsi que le délai, et améliorer les performances des réseaux véhiculaires. Le contrôle de congestion dans les réseaux VANets est une tâche difficile en raison des caractéristiques spécifiques des VANets, telles que la grande mobilité des nœuds à haute vitesse, le taux élevé de changement de topologie, etc. Le contrôle de congestion dans les réseaux VANets peut être effectué en ayant recours à une stratégie qui utilise l'un des paramètres suivants : le taux de transmission, la puissance de transmission, la priorisation et l’ordonnancement, ainsi que les stratégies hybrides. Les stratégies de contrôle de congestion dans les réseaux VANets doivent faire face à quelques défis tels que l'utilisation inéquitable des ressources, la surcharge de communication, le délai de transmission élevé, et l'utilisation inefficace de la bande passante, etc. Par conséquent, il est nécessaire de développer de nouvelles approches pour faire face à ces défis et améliorer la performance des réseaux VANets. Dans cette thèse, dans un premier temps, une stratégie de contrôle de congestion en boucle fermée est développée. Cette stratégie est une méthode de contrôle de congestion dynamique et distribuée qui détecte la congestion en mesurant le niveau d'utilisation du canal. Ensuite, la congestion est contrôlée en ajustant la portée et le taux de transmission qui ont un impact considérable sur la saturation du canal. Ajuster la portée et le taux de transmission au sein des VANets est un problème NP-difficile en raison de la grande complexité de la détermination des valeurs appropriées pour ces paramètres. Considérant les avantages de la méthode de recherche Tabou et son adaptabilité au problème, une méthode de recherche multi-objective est utilisée pour trouver une portée et un taux de transmission dans un délai raisonnable. Le délai et la gigue, fonctions multi-objectifs de l'algorithme Tabou, sont minimisés dans l'algorithme proposé. Par la suite, deux stratégies de contrôle de congestion en boucle ouverte sont proposées afin de réduire la congestion dans les canaux en utilisant la priorisation et l'ordonnancement des messages. Ces stratégies définissent la priorité pour chaque message en considérant son type de contenu (par exemple les messages d'urgence, de beacon, et de service), la taille des messages, et l’état du réseau (par exemple, les métriques de la vélocité, la direction, l'utilité, la distance, et la validité). L'ordonnancement des messages est effectué sur la base des priorités définies. De plus, comme seconde technique d'ordonnancement, une méthode de recherche Tabou est employée pour planifier les files d'attente de contrôle et de service des canaux de transmission dans un délai raisonnable. A cet effet, le délai et la gigue lors de l'acheminement des messages sont minimisés. Enfin, une stratégie localisée et centralisée qui utilise les ensembles RSU fixés aux intersections pour détecter et contrôler de la congestion est proposée. Cette stratégie regroupe tous les messages transférés entre les véhicules qui se sont arrêtés à une lumière de signalisation en utilisant les algorithmes de Machine Learning. Dans cette stratégie, un algorithme de k-means est utilisé pour regrouper les messages en fonction de leurs caractéristiques (par exemple la taille des messages, la validité des messages, et le type de messages, etc.). Les paramètres de communication, y compris le portée et le taux de transmission, la taille de la fenêtre de contention, et le paramètre AIFS (Arbitration Inter-Frame Spacing) sont déterminés pour chaque grappe de messages en vue de minimiser le délai de livraison. Ensuite, les paramètres de communication déterminés sont envoyés aux véhicules par les RSUs, et les véhicules opèrent en fonction de ces paramètres pour le transfert des messages. Les performances des trois stratégies proposées ont été évaluées en simulant des scénarios dans les autoroutes et la circulation urbaine avec les simulateurs NS2 et SUMO. Des comparaisons ont aussi été faites entre les résultats obtenus à partir des stratégies proposées et les stratégies de contrôle de congestion communément utilisées. Les résultats révèlent qu’avec les stratégies de contrôle de congestion proposées, le débit du réseau augmente et le taux de perte de paquets ainsi que de délai diminuent de manière significative en comparaison aux autres stratégies. Par conséquent, l'application des méthodes proposées aide à améliorer la performance, la sureté et la fiabilité des VANets.----------ABSTRACT Vehicular Ad hoc Networks (VANets) are designed to provide reliable wireless communications between high-speed mobile nodes. In order to improve the performance of VANets’ applications, and make a safe and comfort environment for VANets’ users, Quality of Service (QoS) should be supported in these networks. The delay and packet losses are two main indicators of QoS that dramatically increase due to the congestion occurrence in the networks. Indeed, due to congestion occurrence, the channels are saturated and the packet collisions increase in the channels. Therefore, the congestion should be controlled to decrease the packet losses and delay, and to increase the performance of VANets. Congestion control in VANets is a challenging task due to the specific characteristics of VANets such as high mobility of the nodes with high speed, and high rate of topology changes, and so on. Congestion control in VANets can be carried out using the strategies that can be classified into rate-based, power-based, CSMA/CA-based, prioritizing and scheduling-based, and hybrid strategies. The congestion control strategies in VANets face to some challenges such as unfair resources usage, communication overhead, high transmission delay, and inefficient bandwidth utilization, and so on. Therefore, it is required to develop new strategies to cope with these challenges and improve the performance of VANets. In this dissertation, first, a closed-loop congestion control strategy is developed. This strategy is a dynamic and distributed congestion control strategy that detects the congestion by measuring the channel usage level. Then, the congestion is controlled by tuning the transmission range and rate that considerably impact on the channel saturation. Tuning the transmission range and rate in VANets is an NP-hard problem due to the high complexity of determining the proper values for these parameters in vehicular networks. Considering the benefits of Tabu search algorithm and its adaptability with the problem, a multi-objective Tabu search algorithm is used for tuning transmission range and rate in reasonable time. In the proposed algorithm, the delay and jitter are minimized as the objective functions of multi-objective Tabu Search algorithm. Second, two open-loop congestion control strategies are proposed that prevent the congestion occurrence in the channels using the prioritizing and scheduling the messages. These strategies define the priority for each message by considering the content of messages (i.e. types of the messages for example emergency, beacon, and service messages), size of messages, and state of the networks (e.g. velocity, direction, usefulness, distance and validity metrics). The scheduling of the messages is conducted based on the defined priorities. In addition, as the second scheduling technique, a Tabu Search algorithm is employed to schedule the control and service channel queues in a reasonable time. For this purpose, the delay and jitter of messages delivery are minimized. Finally, a localized and centralized strategy is proposed that uses RSUs set at intersections for detecting and controlling the congestion. These strategy clusters all the messages that transferred between the vehicles stopped before the red traffic light using Machine Learning algorithms. In this strategy, a K-means learning algorithm is used for clustering the messages based on their features (e.g. size of messages, validity of messages, and type of messages, and so on). The communication parameters including the transmission range and rate, contention window size, and Arbitration Inter-Frame Spacing (AIFS) are determined for each messages cluter based on the minimized delivery delay. Then, the determined communication parameters are sent to the vehicles by RSUs, and the vehicles operate based on these parameters for transferring the messages. The performances of three proposed strategies were evaluated by simulating the highway and urban scenarios in NS2 and SUMO simulators. Comparisons were also made between the results obtained from the proposed strategies and the common used congestion control strategies. The results reveal that using the proposed congestion control strategies, the throughput, packet loss ratio and delay are significantly improved as compared to the other strategies. Therefore, applications of the proposed strategies help improve the performance, safety, and reliability of VANets

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Performance evaluation of realistic scenarios for vehicular ad hoc networks with VanetMobiSim and NS2

    Get PDF
    Català: En els darrers anys, el considerable creixement del sector dels serveis mòbils arreu del món es certament el major fenòmen al camp de les telecomunicaciones. Les tecnologies inalàmbriques han conduït al desenvolupament de nous sistemes de comunicació y serveis multimèdia. Degut al constant creixement del mercat automobilístic juntament amb la creixent demanda de la seguretat viària ha nascut un nou concepte al camp de les comunicaciones: les xarxes entre vehicles (VANETs). A les VANETs, cada vehicle pot actuar com a router o node, establint connexions entre vehicles propers o amb infraestructura a la carretera. Les VANET estan rebent més atenció del govern i de la indústria automobilística degut a l'àmplia varietat d'aplicacions y serveis que poden oferir, tal com sistemes de seguretet viària assistència a la carretera i accès a Internet. No obstant, el disseny i l'implementació de VANETs és una àrea d'investigació àmplia i complexa tal i com podem percebre, sabent que durant els darrers anys la comunitat investigadora s'ha centrat en l'estudi d'aquestes xarxes. Bàsicament, el nostre projecte està dividit en dues parts principals: Primerament, hem dut a terme una recerca relacionada amb l'estat actual de les VANET avui en dia, amb l'objectiu d'identificar els generadors de moviment i els simuladors de xarxes més apropiats i recomenats a la literatura. En segon lloc, hem decidit utilitzar el VanetMobiSim [80], com a generador de moviment degut a la seva varietat de models de movilitat que es poden testejar, i el NS2 [63] com a simulador de xarxes per ser un dels més utilitzats per molts autors a més de la seva compatibilitat amb el VanetMobiSim. Amb l'ús d'aquestes eines, VanetMobiSim i NS2, hem dut a terme una avaluació profunda de les prestacions de les VANET en diversos escenaris reals, assignant valors diferents a paràmetres tals com el nombre de nodes, la velocitat i el model de propagació.Castellano: En los últimos años, el considerable crecimiento del sector de los servicios móviles alrededor del mundo es con certeza el mayor fenómeno en el campo de las telecomunicaciones. Las tecnologías inalámbricas han conducido al desarrollo de nuevos sistemas de comunicación y servicios multimedia. Debido al constante crecimiento del mercado automovilístico y la creciente demanda en seguridad vial ha nacido un nuevo concepto en el campo de las comunicaciones: las redes entre vehículos (VANETs). En ellas, cada vehículo actúa como router, estableciendo conexiones entre vehículos cercanos o con infraestructura en la carretera. Las VANET estan recibiendo más atención del gobierno y de la industria automovilística debido a la amplia variedad de aplicaciones y servicios que puede ofrecer, tales como sistemas de seguridad vial, asistencia en carretera y acceso a Internet. Sin embargo, el diseño e implementación de las VANET es un area de investigación amplia y compleja, tal y como podemos percibir, sabiendo que durante los últimos años la comunidad investigadora se ha centrado en el estudio de estas redes. Básicamente, nuestro proyecto está dividido en dos partes principales: Primeramente, hemos llevado a cabo una búsqueda relacionada con el estado de arte de las VANET hoy en día, con el objetivo de identificar los generadores de movimiento i los simuladores de redes más apropiados i recomendados en la literatura. En segundo lugar, hemos decidido utilizar el VanetMobiSim [80], como generador de movimiento debido a la alta variedad de modelos de mobilidad que que se pueden testear, y el NS2 [63] como simulador de redes por ser uno de los más utilizados per muchos autores además de su compatibilidad con el VanetMobiSim. Con el uso de estas herramientas, hemos llevado a cabo una evaluación profunda de las prestaciones de las VANET en varios escenarios reales, asignando valores diferentes a parámetros tales como el número de nodos, la velocidad y el modelo de propagación.English: Over recent years, the considerable mobile services sector growth around the world was certainly the major phenomenon in the telecommunications field. Wireless technology has led to the development of new communications systems and multimedia services. Due to the continued growth of the vehicular industry and the increasing demand of road safety, a new concept in the communications field was born: vehicular networks (VANETs). In VANETs, each vehicle could act as router or node, establishing connections among nearby vehicles or with roadside infrastructure. VANETs are receiving more attention from governments and car manufacturers due to the wide variety of applications and services they can provide such as road safety systems, car assistance and Internet acces. However, designing and implementing VANETs is a complex and wide area of research as we can notice, knowing that in the last years the research and development community has focused on the study of such networks. Basically, our project is divided in two main parts: Firstly, we made a state of art related to the actual state of VANETs nowadays in order to find the most appropiate and recommended mobility generator and network simulator reported in the literature. Secondly, we decided to use VanetMobiSim [80], as a mobility generator due to its variety mobility models that could be tested, and NS2 [63] as a network simulator for being one of the most used by many authors and also due to its compatibilty with VanetMobiSim. Using these tools, VanetMobiSim and NS2, we carried out a deep performance evaluation of VANETs in several realistic scenarios, giving different values to parameters such as the number of nodes, speed and the propagation model

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore