722 research outputs found

    Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interaction networks and phenotype similarity information have been synthesized together to discover novel disease-causing genes. Genetic or phenotypic similarities are manifested as certain modularity properties in a phenotype-gene heterogeneous network consisting of the phenotype-phenotype similarity network, protein-protein interaction network and gene-disease association network. However, the quantitative analysis of modularity in the heterogeneous network and its influence on disease-gene discovery are still unaddressed. Furthermore, the genetic correspondence of the disease subtypes can be identified by marking the genes and phenotypes in the phenotype-gene network. We present a novel network inference method to measure the network modularity, and in particular to suggest the subtypes of diseases based on the heterogeneous network.</p> <p>Results</p> <p>Based on a measure which is introduced to evaluate the closeness between two nodes in the phenotype-gene heterogeneous network, we developed a Hitting-Time-based method, CIPHER-HIT, for assessing the modularity of disease gene predictions and credibly prioritizing disease-causing genes, and then identifying the genetic modules corresponding to potential subtypes of the queried phenotype. The CIPHER-HIT is free to rely on any preset parameters. We found that when taking into account the modularity levels, the CIPHER-HIT method can significantly improve the performance of disease gene predictions, which demonstrates modularity is one of the key features for credible inference of disease genes on the phenotype-gene heterogeneous network. By applying the CIPHER-HIT to the subtype analysis of Breast cancer, we found that the prioritized genes can be divided into two sub-modules, one contains the members of the Fanconi anemia gene family, and the other contains a reported protein complex MRE11/RAD50/NBN.</p> <p>Conclusions</p> <p>The phenotype-gene heterogeneous network contains abundant information for not only disease genes discovery but also disease subtypes detection. The CIPHER-HIT method presented here is effective for network inference, particularly on credible prediction of disease genes and the subtype analysis of diseases, for example Breast cancer. This method provides a promising way to analyze heterogeneous biological networks, both globally and locally.</p

    ToppGene Suite for gene list enrichment analysis and candidate gene prioritization

    Get PDF
    ToppGene Suite (http://toppgene.cchmc.org; this web site is free and open to all users and does not require a login to access) is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis. A P-value of each annotation of a test gene is derived by random sampling of the whole genome. The protein–protein interaction network (PPIN)-based disease candidate gene prioritization uses social and Web networks analysis algorithms (extended versions of the PageRank and HITS algorithms, and the K-Step Markov method). We demonstrate the utility of ToppGene Suite using 20 recently reported GWAS-based gene–disease associations (including novel disease genes) representing five diseases. ToppGene ranked 19 of 20 (95%) candidate genes within the top 20%, while ToppNet ranked 12 of 16 (75%) candidate genes among the top 20%

    A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics

    Get PDF
    Background: Genome-wide data are increasingly important in the clinical evaluation of human disease. However, the large number of variants observed in individual patients challenges the efficiency and accuracy of diagnostic review. Recent work has shown that systematic integration of clinical phenotype data with genotype information can improve diagnostic workflows and prioritization of filtered rare variants. We have developed visually interactive, analytically transparent analysis software that leverages existing disease catalogs, such as the Online Mendelian Inheritance in Man database (OMIM) and the Human Phenotype Ontology (HPO), to integrate patient phenotype and variant data into ranked diagnostic alternatives. Methods: Our tool, “OMIM Explorer” (http://www.omimexplorer.com), extends the biomedical application of semantic similarity methods beyond those reported in previous studies. The tool also provides a simple interface for translating free-text clinical notes into HPO terms, enabling clinical providers and geneticists to contribute phenotypes to the diagnostic process. The visual approach uses semantic similarity with multidimensional scaling to collapse high-dimensional phenotype and genotype data from an individual into a graphical format that contextualizes the patient within a low-dimensional disease map. The map proposes a differential diagnosis and algorithmically suggests potential alternatives for phenotype queries—in essence, generating a computationally assisted differential diagnosis informed by the individual’s personal genome. Visual interactivity allows the user to filter and update variant rankings by interacting with intermediate results. The tool also implements an adaptive approach for disease gene discovery based on patient phenotypes. Results: We retrospectively analyzed pilot cohort data from the Baylor Miraca Genetics Laboratory, demonstrating performance of the tool and workflow in the re-analysis of clinical exomes. Our tool assigned to clinically reported variants a median rank of 2, placing causal variants in the top 1 % of filtered candidates across the 47 cohort cases with reported molecular diagnoses of exome variants in OMIM Morbidmap genes. Our tool outperformed Phen-Gen, eXtasy, PhenIX, PHIVE, and hiPHIVE in the prioritization of these clinically reported variants. Conclusions: Our integrative paradigm can improve efficiency and, potentially, the quality of genomic medicine by more effectively utilizing available phenotype information, catalog data, and genomic knowledge

    Role of network topology based methods in discovering novel gene-phenotype associations

    Get PDF
    The cell is governed by the complex interactions among various types of biomolecules. Coupled with environmental factors, variations in DNA can cause alterations in normal gene function and lead to a disease condition. Often, such disease phenotypes involve coordinated dysregulation of multiple genes that implicate inter-connected pathways. Towards a better understanding and characterization of mechanisms underlying human diseases, here, I present GUILD, a network-based disease-gene prioritization framework. GUILD associates genes with diseases using the global topology of the protein-protein interaction network and an initial set of genes known to be implicated in the disease. Furthermore, I investigate the mechanistic relationships between disease-genes and explain the robustness emerging from these relationships. I also introduce GUILDify, an online and user-friendly tool which prioritizes genes for their association to any user-provided phenotype. Finally, I describe current state-of-the-art systems-biology approaches where network modeling has helped extending our view on diseases such as cancer.La cèl•lula es regeix per interaccions complexes entre diferents tipus de biomolècules. Juntament amb factors ambientals, variacions en el DNA poden causar alteracions en la funció normal dels gens i provocar malalties. Sovint, aquests fenotips de malaltia involucren una desregulació coordinada de múltiples gens implicats en vies interconnectades. Per tal de comprendre i caracteritzar millor els mecanismes subjacents en malalties humanes, en aquesta tesis presento el programa GUILD, una plataforma que prioritza gens relacionats amb una malaltia en concret fent us de la topologia de xarxe. A partir d’un conjunt conegut de gens implicats en una malaltia, GUILD associa altres gens amb la malaltia mitjancant la topologia global de la xarxa d’interaccions de proteïnes. A més a més, analitzo les relacions mecanístiques entre gens associats a malalties i explico la robustesa es desprèn d’aquesta anàlisi. També presento GUILDify, un servidor web de fácil ús per la priorització de gens i la seva associació a un determinat fenotip. Finalment, descric els mètodes més recents en què el model•latge de xarxes ha ajudat extendre el coneixement sobre malalties complexes, com per exemple a càncer
    corecore