333 research outputs found

    Collective genomic segments with differential pleiotropic patterns between cognitive dimensions and psychopathology

    Get PDF
    Cognitive deficits are known to be related to most forms of psychopathology. Here, we perform local genetic correlation analysis as a means of identifying independent segments of the genome that show biologically interpretable pleiotropic associations between cognitive dimensions and psychopathology. We identify collective segments of the genome, which we call “meta-loci”, showing differential pleiotropic patterns for psychopathology relative to either cognitive task performance (CTP) or performance on a non-cognitive factor (NCF) derived from educational attainment. We observe that neurodevelopmental gene sets expressed during the prenatal-early childhood period predominate in CTP-relevant meta-loci, while post-natal gene sets are more involved in NCF-relevant meta-loci. Further, we demonstrate that neurodevelopmental gene sets are dissociable across CTP meta-loci with respect to their spatial distribution across the brain. Additionally, we find that GABA-ergic, cholinergic, and glutamatergic genes drive pleiotropic relationships within dissociable meta-loci

    Functional Analysis of Human Long Non-coding RNAs and Their Associations with Diseases

    Get PDF
    Within this study, we sought to leverage knowledge from well-characterized protein coding genes to characterize the lesser known long non-coding RNA (lncRNA) genes using computational methods to find functional annotations and disease associations. Functional genome annotation is an essential step to a systems-level view of the human genome. With this knowledge, we can gain a deeper understanding of how humans develop and function, and a better understanding of human disease. LncRNAs are transcripts greater than 200 nucleotides, which do not code for proteins. LncRNAs have been found to regulate development, tissue and cell differentiation, and organ formation. Their dysregulation has been linked to several diseases including autism spectrum disorder (ASD) and cancer. While a great deal of research has been dedicated to protein-coding genes, the relatively recently discovered lncRNA genes have yet to be characterized. LncRNA function is tied closely to when and where they are expressed. Co-expression network analysis offer a means of functional annotation of uncharacterized genes through a guilt by association approach. We have constructed two co-expression networks using known disease-associated protein-coding genes and lncRNA genes. Through clustering of the networks, gene set enrichment analysis, and centrality measures, we found enrichment for disease association and functions as well as identified high-confidence lncRNA disease gene targets. We present a novel approach to the identification of disease state associations by demonstrating genes that are associated with the same disease states share patterns that can be discerned from transcriptomes of healthy tissues. Using a machine learning algorithm, we built a model to classify ASD versus non-ASD genes using their expression profiles from healthy developing human brain tissues. Feature selection during the model-building process also identified critical temporospatial points for the determination of ASD genes. We constructed a webserver tool for the prioritization of genes for ASD association. The webserver tool has a database containing prioritization and co-expression information for nearly every gene in the human genome

    Social software for music

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    Reasoning-Supported Quality Assurance for Knowledge Bases

    Get PDF
    The increasing application of ontology reuse and automated knowledge acquisition tools in ontology engineering brings about a shift of development efforts from knowledge modeling towards quality assurance. Despite the high practical importance, there has been a substantial lack of support for ensuring semantic accuracy and conciseness. In this thesis, we make a significant step forward in ontology engineering by developing a support for two such essential quality assurance activities

    The need for an integrated multi‐OMICs approach in microbiome science in the food system

    Get PDF
    Microbiome science as an interdisciplinary research field has evolved rapidly over the past two decades, becoming a popular topic not only in the scientific community and among the general public, but also in the food industry due to the growing demand for microbiome-based technologies that provide added-value solutions. Microbiome research has expanded in the context of food systems, strongly driven by methodological advances in different -omics fields that leverage our understanding of microbial diversity and function. However, managing and integrating different complex -omics layers are still challenging. Within the Coordinated Support Action MicrobiomeSupport (https://www.microbiomesupport.eu/), a project supported by the European Commission, the workshop “Metagenomics, Metaproteomics and Metabolomics: the need for data integration in microbiome research” gathered 70 participants from different microbiome research fields relevant to food systems, to discuss challenges in microbiome research and to promote a switch from microbiome-based descriptive studies to functional studies, elucidating the biology and interactive roles ofmicrobiomes in food systems. A combination of technologies is proposed. This will reduce the biases resulting from each individual technology and result in a more comprehensive view of the biological system as a whole. Although combinations of different datasets are still rare, advanced bioinformatics tools and artificial intelligence approaches can contribute to understanding, prediction, and management of the microbiome, thereby providing the basis for the improvement of food quality and safety
    corecore