5 research outputs found

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project – Phase 4

    Get PDF
    This task was proposed and established as a result of a pair of 2012 workshops sponsored by the DoD Engineered Resilient Systems technology priority area and by the SERC. The workshops focused on how best to strengthen DoD’s capabilities in dealing with its systems’ non-functional requirements, often also called system qualities, properties, levels of service, and –ilities. The term –ilities was often used during the workshops, and became the title of the resulting SERC research task: “ilities Tradespace and Affordability Project (iTAP).” As the project progressed, the term “ilities” often became a source of confusion, as in “Do your results include considerations of safety, security, resilience, etc., which don’t have “ility” in their names?” Also, as our ontology, methods, processes, and tools became of interest across the DoD and across international and standards communities, we found that the term “System Qualities” was most often used. As a result, we are changing the name of the project to “System Qualities Ontology, Tradespace, and Affordability (SQOTA).” Some of this year’s university reports still refer to the project as “iTAP.”This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004

    A FRAMEWORK FOR SOFTWARE RELIABILITY MANAGEMENT BASED ON THE SOFTWARE DEVELOPMENT PROFILE MODEL

    Get PDF
    Recent empirical studies of software have shown a strong correlation between change history of files and their fault-proneness. Statistical data analysis techniques, such as regression analysis, have been applied to validate this finding. While these regression-based models show a correlation between selected software attributes and defect-proneness, in most cases, they are inadequate in terms of demonstrating causality. For this reason, we introduce the Software Development Profile Model (SDPM) as a causal model for identifying defect-prone software artifacts based on their change history and software development activities. The SDPM is based on the assumption that human error during software development is the sole cause for defects leading to software failures. The SDPM assumes that when a software construct is touched, it has a chance to become defective. Software development activities such as inspection, testing, and rework further affect the remaining number of software defects. Under this assumption, the SDPM estimates the defect content of software artifacts based on software change history and software development activities. SDPM is an improvement over existing defect estimation models because it not only uses evidence from current project to estimate defect content, it also allows software managers to manage software projects quantitatively by making risk informed decisions early in software development life cycle. We apply the SDPM in several real life software development projects, showing how it is used and analyzing its accuracy in predicting defect-prone files and compare the results with the Poisson regression model

    EMPIRICAL CHARACTERIZATION OF SOFTWARE QUALITY

    Get PDF
    The research topic focuses on the characterization of software quality considering the main software elements such as people, process and product. Many attributes (size, language, testing techniques etc.) probably could have an effect on the quality of software. In this thesis we aim to understand the impact of attributes of three P’s (people, product, process) on the quality of software by empirical means. Software quality can be interpreted in many ways, such as customer satisfaction, stability and defects etc. In this thesis we adopt ‘defect density’ as a quality measure. Therefore the research focus on the empirical evidences of the impact of attributes of the three P’s on the software defect density. For this reason empirical research methods (systematic literature reviews, case studies, and interviews) are utilized to collect empirical evidence. Each of this research method helps to extract the empirical evidences of the object under study and for data analysis statistical methods are used. Considering the product attributes, we have studied the size, language, development mode, age, complexity, module structure, module dependency, and module quality and their impact on project quality. Considering the process attributes, we have studied the process maturity and structure, and their impact on the project quality. Considering the people attributes, we have studied the experience and capability, and their impact on the project quality. Moreover, in the process category, we have studied the impact of one testing approach called ‘exploratory testing’ and its impact on the quality of software. Exploratory testing is a widely used software-testing practice and means simultaneous learning, test design, and test execution. We have analyzed the exploratory testing weaknesses, and proposed a hybrid testing approach in an attempt to improve the quality. Concerning the product attributes, we found that there exist a significant difference of quality between open and close source projects, java and C projects, and large and small projects. Very small and defect free modules have impact on the software quality. Different complexity metrics have different impact on the software quality considering the size. Product complexity as defined in Table 53 has partial impact on the software quality. However software age and module dependencies are not factor to characterize the software quality. Concerning the people attributes, we found that platform experience, application experience and language and tool experience have significant impact on the software quality. Regarding the capability we found that programmer capability has partial impact on the software quality where as analyst capability has no impact on the software quality. Concerning process attributes we found that there is no difference of quality between the project developed under CMMI and those that are not developed under CMMI. Regarding the CMMI levels there is difference of software quality particularly between CMMI level 1 and CMMI level 3. Comparing different process types we found that hybrid projects are of better quality than waterfall projects. Process maturity defined by (SEI-CMM) has partial impact on the software quality. Concerning exploratory testing, we found that exploratory testing weaknesses induce the testing technical debt therefore a process is defined in conjunction with the scripted testing in an attempt to reduce the associated technical debt of exploratory testing. The findings are useful for both researchers and practitioners to evaluate their project
    corecore