22,414 research outputs found

    A GPU-Enabled, High-Resolution Cosmological Microlensing Parameter Survey

    Full text link
    In the era of synoptic surveys, the number of known gravitationally lensed quasars is set to increase by over an order of magnitude. These new discoveries will enable a move from single-quasar studies to investigations of statistical samples, presenting new opportunities to test theoretical models for the structure of quasar accretion discs and broad emission line regions (BELRs). As one crucial step in preparing for this influx of new lensed systems, a large-scale exploration of microlensing convergence-shear parameter space is warranted, requiring the computation of O(10^5) high resolution magnification maps. Based on properties of known lensed quasars, and expectations from accretion disc/BELR modelling, we identify regions of convergence-shear parameter space, map sizes, smooth matter fractions, and pixel resolutions that should be covered. We describe how the computationally time-consuming task of producing ~290000 magnification maps with sufficient resolution (10000^2 pixel/map) to probe scales from the inner edge of the accretion disc to the BELR can be achieved in ~400 days on a 100 teraflop/s high performance computing facility, where the processing performance is achieved with graphics processing units. We illustrate a use-case for the parameter survey by investigating the effects of varying the lens macro-model on accretion disc constraints in the lensed quasar Q2237+0305. We find that although all constraints are consistent within their current error bars, models with more densely packed microlenses tend to predict shallower accretion disc radial temperature profiles. With a large parameter survey such as the one described here, such systematics on microlensing measurements could be fully explored.Comment: 30 pages, 3 figures, accepted for publication in Ap

    A randomized, placebo-controlled trial of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): impact on angina and myocardial perfusion reserve.

    Get PDF
    AimsThe mechanistic basis of the symptoms and signs of myocardial ischaemia in patients without obstructive coronary artery disease (CAD) and evidence of coronary microvascular dysfunction (CMD) is unclear. The aim of this study was to mechanistically test short-term late sodium current inhibition (ranolazine) in such subjects on angina, myocardial perfusion reserve index, and diastolic filling.Materials and resultsRandomized, double-blind, placebo-controlled, crossover, mechanistic trial in subjects with evidence of CMD [invasive coronary reactivity testing or non-invasive cardiac magnetic resonance imaging myocardial perfusion reserve index (MPRI)]. Short-term oral ranolazine 500-1000 mg twice daily for 2 weeks vs. placebo. Angina measured by Seattle Angina Questionnaire (SAQ) and SAQ-7 (co-primaries), diary angina (secondary), stress MPRI, diastolic filling, quality of life (QoL). Of 128 (96% women) subjects, no treatment differences in the outcomes were observed. Peak heart rate was lower during pharmacological stress during ranolazine (-3.55 b.p.m., P < 0.001). The change in SAQ-7 directly correlated with the change in MPRI (correlation 0.25, P = 0.005). The change in MPRI predicted the change in SAQ QoL, adjusted for body mass index (BMI), prior myocardial infarction, and site (P = 0.0032). Low coronary flow reserve (CFR <2.5) subjects improved MPRI (P < 0.0137), SAQ angina frequency (P = 0.027), and SAQ-7 (P = 0.041).ConclusionsIn this mechanistic trial among symptomatic subjects, no obstructive CAD, short-term late sodium current inhibition was not generally effective for SAQ angina. Angina and myocardial perfusion reserve changes were related, supporting the notion that strategies to improve ischaemia should be tested in these subjects.Trial registrationclinicaltrials.gov Identifier: NCT01342029

    Neuro-rescue during Carotid Stenting

    Get PDF
    AbstractThis paper deals with the treatment of acute neurological complications that may occur during carotid angioplasty with stenting. Endovascular ‘neurorescue’ techniques include mechanical thrombus removal (using retrieval devices, aspiration catheters, and wire or balloon fragmentation) and local and intra-arterial thrombolysis. The treatment of acute thrombosis and dissection during carotid artery and stenting will also be discussed.Knowledge of these additional skills is essential to increasing the safety of carotid stenting procedures

    Fraction eutectic measurements in slowly cooled Pb - 15 wt percent Sn alloys

    Get PDF
    A space shuttle experiment employing the General Purpose Furnace in its isothermal mode of operation is currently manifested for flight circa 1989. The aim of this experiment was to investigate the role of gravity in a slowly, and isothermally, cooled sample of a binary Pb - 15 wt percent Sn alloy. Ground based work in support of the microgravity experiment is discussed. In particular, it is shown that fraction eutectic measurements using an image analyzer, can be used to satisfactorily describe macrosegregation occurring in these slowly cooled ingots

    In situ studies of materials for high temperature CO2 capture and storage.

    Get PDF
    Carbon capture and storage (CCS) offers a possible solution to curb the CO2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO2 capture, such as the CaO-CaCO3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions.M.T. Dunstan acknowledges funding from the Cambridge Commonwealth Trusts and Trinity College, Cambridge. M.T. Dunstan, S.A. Scott, J.S. Dennis and C.P. Grey acknowledge funding from EPSRC Grant No. EP/K030132/1. W. Liu acknowledges funding from NRF, Singapore under its CREATE programme. The authors would like to thank the Science Facilities and Technologies Council, Diamond Light Source and Paul Scherrer Institut for the award of beamtime. The authors would especially like to thank Dr Julie Fife and Dr David HaberthĂŒr at TOMCAT, Dr Tristan Youngs and Dr Daniel Bowron at NIMROD, and Dr Philip Chater at I15 for their assistance in collecting and processing the data, and Simon Griggs for assistance with SEM. M.W. Gaultois is grateful for support from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No. 659764.This is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C6FD00047

    A multiscale data-driven approach for bone tissue biomechanics

    Get PDF
    The data-driven methodology with application to continuum mechanics relies upon two main pillars: (i) experimental characterization of stress–strain pairs associated to different loading states, and (ii) numerical elaboration of the elasticity equations as an optimization (searching) algorithm using compatibility and equilibrium as constraints. The purpose of this work is to implement a multiscale data-driven approach using experimental data of cortical bone tissue at different scales. First, horse cortical bone samples are biaxially loaded and the strain fields are recorded over a region of interest using a digital image correlation technique. As a result, both microscopic strain fields and macroscopic strain states are obtained by a homogenization procedure, associated to macroscopic stress loading states which are considered uniform along the sample. This experimental outcome is here referred as a multiscale dataset. Second, the proposed multiscale data-driven methodology is implemented and analyzed in an example of application. Results are presented both in the macroscopic and microscopic scales, with the latter considered just as a post-process step in the formulation. The macroscopic results show non-smooth strain and stress patterns as a consequence of the tissue heterogeneity which suggest that a preassumed linear homogeneous orthotropic model may be inaccurate for bone tissue. Microscopic results show fluctuating strain fields – as a consequence of the interaction and evolution of the microconstituents – an order of magnitude higher than the averaged macroscopic solution, which evidences the need of a multiscale approach for the mechanical analysis of cortical bone, since the driving force of many biological bone processes is local at the microstructural level. Finally, the proposed multiscale data-driven technique may also be an adequate strategy for the solution of intractable large size multiscale FE2 computational approaches since the solution at the microscale is obtained as a postprocessing. As a main conclusion, the proposed multiscale data-driven methodology is a useful alternative to overcome limitations in the continuum mechanical study of the bone tissue. This methodology may also be considered as a useful strategy for the analysis of additional biological or technological hierarchical multiscale materials
    • 

    corecore