4,897 research outputs found

    Defining a robust biological prior from Pathway Analysis to drive Network Inference

    Get PDF
    Inferring genetic networks from gene expression data is one of the most challenging work in the post-genomic era, partly due to the vast space of possible networks and the relatively small amount of data available. In this field, Gaussian Graphical Model (GGM) provides a convenient framework for the discovery of biological networks. In this paper, we propose an original approach for inferring gene regulation networks using a robust biological prior on their structure in order to limit the set of candidate networks. Pathways, that represent biological knowledge on the regulatory networks, will be used as an informative prior knowledge to drive Network Inference. This approach is based on the selection of a relevant set of genes, called the "molecular signature", associated with a condition of interest (for instance, the genes involved in disease development). In this context, differential expression analysis is a well established strategy. However outcome signatures are often not consistent and show little overlap between studies. Thus, we will dedicate the first part of our work to the improvement of the standard process of biomarker identification to guarantee the robustness and reproducibility of the molecular signature. Our approach enables to compare the networks inferred between two conditions of interest (for instance case and control networks) and help along the biological interpretation of results. Thus it allows to identify differential regulations that occur in these conditions. We illustrate the proposed approach by applying our method to a study of breast cancer's response to treatment

    Modeling and identification of gene regulatory networks: A Granger causality approach

    Get PDF
    It is of increasing interest in systems biology to discover gene regulatory networks (GRNs) from time-series genomic data, i.e., to explore the interactions among a large number of genes and gene products over time. Currently, one common approach is based on Granger causality, which models the time-series genomic data as a vector autoregressive (VAR) process and estimates the GRNs from the VAR coefficient matrix. The main challenge for identification of VAR models is the high dimensionality of genes and limited number of time points, which results in statistically inefficient solution and high computational complexity. Therefore, fast and efficient variable selection techniques are highly desirable. In this paper, an introductory review of identification methods and variable selection techniques for VAR models in learning the GRNs will be presented. Furthermore, a dynamic VAR (DVAR) model, which accounts for dynamic GRNs changing with time during the experimental cycle, and its identification methods are introduced. © 2010 IEEE.published_or_final_versionThe 9th International Conference on Machine Learning and Cybernetics (ICMLC 2010), Qingdao, China, 11-14 July 2010. In Proceedings of the 9th ICMLC, 2010, v. 6, p. 3073-307

    Genomics, “Discovery Science,” Systems Biology, and Causal Explanation: What Really Works?

    Get PDF
    Diverse and non-coherent sets of epistemological principles currently inform research in the general area of functional genomics. Here, from the personal point of view of a scientist with over half a century of immersion in hypothesis driven scientific discovery, I compare and deconstruct the ideological bases of prominent recent alternatives, such as “discovery science,” some productions of the ENCODE project, and aspects of large data set systems biology. The outputs of these types of scientific enterprise qualitatively reflect their radical definitions of scientific knowledge, and of its logical requirements. Their properties emerge in high relief when contrasted (as an example) to a recent, system-wide, predictive analysis of a developmental regulatory apparatus that was instead based directly on hypothesis-driven experimental tests of mechanism

    Principles for the post-GWAS functional characterisation of risk loci

    Get PDF
    Several challenges lie ahead in assigning functionality to susceptibility SNPs. For example, most effect sizes are small relative to effects seen in monogenic diseases, with per allele odds ratios usually ranging from 1.15 to 1.3. It is unclear whether current molecular biology methods have enough resolution to differentiate such small effects. Our objective here is therefore to provide a set of recommendations to optimize the allocation of effort and resources in order maximize the chances of elucidating the functional contribution of specific loci to the disease phenotype. It has been estimated that 88% of currently identified disease-associated SNP are intronic or intergenic. Thus, in this paper we will focus our attention on the analysis of non-coding variants and outline a hierarchical approach for post-GWAS functional studies

    Modelling signaling networks underlying plant defence

    Get PDF
    Transcriptional reprogramming plays a significant role in governing plant responses to pathogens. The underlying regulatory networks are complex and dynamic, responding to numerous input signals. Most network modelling studies to date have used large-scale expression data sets from public repositories but defence network models with predictive ability have also been inferred from single time series data sets, and sophisticated biological insights generated from focused experiments containing multiple network perturbations. Using multiple network inference methods, or combining network inference with additional data, such as promoter motifs, can enhance the ability of the model to predict gene function or regulatory relationships. Network topology can highlight key signaling components and provides a systems level understanding of plant defence
    corecore