1,277 research outputs found

    Functional Nanomaterials and Polymer Nanocomposites: Current Uses and Potential Applications

    Get PDF
    This book covers a broad range of subjects, from smart nanoparticles and polymer nanocomposite synthesis and the study of their fundamental properties to the fabrication and characterization of devices and emerging technologies with smart nanoparticles and polymer integration

    High-performance shape memory composites with intrinsic heating capabilities

    Get PDF
    Shape morphing structures have played a significant role within the field of aerospace for more than a century. While the shape morphing aerostructures of the past and present have depended on hinges and motors to achieve morphing, their future is expected to rely on smart materials and structures that have intrinsic shape morphing capabilities. One such smart material, that has previously been developed at Imperial College London, is the carbon fibre reinforced epoxy polymer (CFRP) composite with thermoplastic (TP) interleaves. These interleaved composites exhibit controllable stiffness (CS) and shape memory (SM) capabilities under suitable thermal conditions. While these interleaved composites showed excellent shape morphing capabilities, they had several drawbacks. These composites showed poor flexural modulus and through-thickness shear strength compared to the epoxy-based non-interleaved CFRP. These composites also used an oven to achieve the high temperatures required to exhibit the CS and SM capabilities. This thesis describes studies conducted to mitigate these drawbacks. In the first study described in this thesis, the source of the premature through-thickness shear failure in TP interleaved CFRP composites was discovered to be the low shear strength of the polystyrene (PS) interleaves used in previous works. It was then demonstrated that replacing PS with Poly(styrene-co-acrylonitrile) (SAN) could improve the through-thickness shear strength of the interleaved composites to be almost as high as that of pristine CFRP. Furthermore, the SAN-interleaved CFRP laminates also exhibited excellent CS and SM capabilities. In the next study described in this thesis, it was demonstrated that the flexural modulus of TP interleaved CFRP composites can be substantially improved by two different methods- (i) reducing the thickness of the TP interleaves, and (ii) introducing reinforcements within the TP interleaves. The following study describes how intrinsic heating capability was achieved in TP interleaved CFRP composites, through resistive heating of heater elements such as stainless steel (SS) meshes and woven carbon fabric (WCF) embedded within the layup of the composite. This intrinsic heating strategy was used to supply the temperature necessary for the corresponding composites to exhibit CS and SM capabilities. As a result, these intrinsically heated TP interleaved CFRP composites exhibited successful out-of-oven morphing capabilities. In the final study described in this thesis, composite structures that were initially flat in their as-cured state, but were capable of deployment into planar and curved meshes were designed. Finite element numerical models were used to predict the deployment capabilities of these composite structures. Finally, the deployable composite mesh structures were manufactured and characterised.Open Acces

    Mechanical energy harvesting and self-powered electronic applications of textile-based piezoelectric nanogenerators: a systematic review

    Get PDF
    Environmental pollution resulting from fossil fuel consumption and the limited lifespan of batteries has shifted the focus of energy research towards the adoption of green renewable technologies. On the other hand, there is a growing potential for small, wearable, portable electronic devices. Therefore, considering the pollution caused by fossil fuels, the drawbacks of chemical batteries, and the potential applications of small-scale wearables and portable electronic devices, the development of a more effective lightweight power source is essential. In this context, piezoelectric energy harvesting technology has attracted keen attention. Piezoelectric energy harvesting technology is a process that converts mechanical energy into electrical energy and vice-versa. Piezoelectric energy harvesters can be fabricated in various ways, including through solution casting, electrospinning, melt spinning, and solution spinning techniques. Solution and melt-spun filaments can be used to develop woven, knitted, and braided textile-based piezoelectric energy harvesters. The integration of textile-based piezoelectric energy harvesters with conventional textile clothing will be a key enabling technology in realising the next generation smart wearable electronics. This review focuses on the current achievements on textile based piezoelectric nanogenerators (T-PENGs), basic knowledge about piezoelectric materials and the piezoelectric mechanism. Additionally, the basic understanding of textiles, different fabrication methods of T-PENGs, and the strategies to improve the performance of piezoelectric nanogenerators are discussed in the subsequent sections. Finally, the challenges faced in harvesting energy using textile based piezoelectric nanogenerators (T-PENGs) are identified, and a perspective to inspire researchers working in this area is presented

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome

    Advanced Materials and Technologies in Nanogenerators

    Get PDF
    This reprint discusses the various applications, new materials, and evolution in the field of nanogenerators. This lays the foundation for the popularization of their broad applications in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics, and artificial intelligence

    Analysis, Design and Fabrication of Micromixers, Volume II

    Get PDF
    Micromixers are an important component in micrototal analysis systems and lab-on-a-chip platforms which are widely used for sample preparation and analysis, drug delivery, and biological and chemical synthesis. The Special Issue "Analysis, Design and Fabrication of Micromixers II" published in Micromachines covers new mechanisms, numerical and/or experimental mixing analysis, design, and fabrication of various micromixers. This reprint includes an editorial, two review papers, and eleven research papers reporting on five active and six passive micromixers. Three of the active micromixers have electrokinetic driving force, but the other two are activated by mechanical mechanism and acoustic streaming. Three studies employs non-Newtonian working fluids, one of which deals with nano-non-Newtonian fluids. Most of the cases investigated micromixer design

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ
    • …
    corecore