181 research outputs found

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений

    A dual watermarking scheme for identity protection

    Get PDF
    A novel dual watermarking scheme with potential applications in identity protection, media integrity maintenance and copyright protection in both electronic and printed media is presented. The proposed watermarking scheme uses the owner’s signature and fingerprint as watermarks through which the ownership and validity of the media can be proven and kept intact. To begin with, the proposed watermarking scheme is implemented on continuous-tone/greyscale images, and later extended to images achieved via multitoning, an advanced version of halftoning-based printing. The proposed watermark embedding is robust and imperceptible. Experimental simulations and evaluations of the proposed method show excellent results from both objective and subjective view-points

    Hiding Information- A Survey

    Get PDF
    Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, e.g., image audio, and video files. It comes under the assumption that if the feature is visible, the point of attack is evident, thus the goal here is always to conceal the very existence of the embedded data. In comparison with Analog media, Digital media offers several distinctadvantages such as high quality, easy editing, high fidelity copying, compression etcIn order to address this Information Security,Steganography plays an important role. Steganography is the art and science of writing hidden messagesin such a way that no one apart from the sender and intended recipient even realizes there is a hiddenmessage. This paper is a tutorial review of the steganography techniques appeared in the literature

    Advanced Linear Identification Techniques For Signal Processing And Digital Video Broadcasting

    Get PDF
    Linear identification technique is to linearly embed a piece of unique information into digital media data for the purpose of satisfying specific demands such as identification, annotation, and copyright, etc. We need to consider the quantity and the quality of identification data to be embedded as well as the corresponding interference to the original subject signal. However, there exist no generalized computationally-efficient optimization techniques for linear identification up to now. Therefore, in this dissertation work, we try to theoretically investigate the advanced linear identification techniques and combat the tradeoff problems between the quality of the embedded identification data and the quality of the subject signal. Two particular signal processing and telecommunication applications, namely transmitter identification and digital watermarking, will be exploited in this work. We propose a novel optimization paradigm for both digital terrestrial television (DTV) systems and multiple digital watermarking systems to maximize the overall signal-to-interference-plus-noise ratio (SINR) over both identification and subject signals. The new theories and practice related to pseudo random sequences, extended arithmetic-geometric mean inequality, and constrained overall system performance are also presented in this dissertation

    Digital watermark technology in security applications

    Get PDF
    With the rising emphasis on security and the number of fraud related crimes around the world, authorities are looking for new technologies to tighten security of identity. Among many modern electronic technologies, digital watermarking has unique advantages to enhance the document authenticity. At the current status of the development, digital watermarking technologies are not as matured as other competing technologies to support identity authentication systems. This work presents improvements in performance of two classes of digital watermarking techniques and investigates the issue of watermark synchronisation. Optimal performance can be obtained if the spreading sequences are designed to be orthogonal to the cover vector. In this thesis, two classes of orthogonalisation methods that generate binary sequences quasi-orthogonal to the cover vector are presented. One method, namely "Sorting and Cancelling" generates sequences that have a high level of orthogonality to the cover vector. The Hadamard Matrix based orthogonalisation method, namely "Hadamard Matrix Search" is able to realise overlapped embedding, thus the watermarking capacity and image fidelity can be improved compared to using short watermark sequences. The results are compared with traditional pseudo-randomly generated binary sequences. The advantages of both classes of orthogonalisation inethods are significant. Another watermarking method that is introduced in the thesis is based on writing-on-dirty-paper theory. The method is presented with biorthogonal codes that have the best robustness. The advantage and trade-offs of using biorthogonal codes with this watermark coding methods are analysed comprehensively. The comparisons between orthogonal and non-orthogonal codes that are used in this watermarking method are also made. It is found that fidelity and robustness are contradictory and it is not possible to optimise them simultaneously. Comparisons are also made between all proposed methods. The comparisons are focused on three major performance criteria, fidelity, capacity and robustness. aom two different viewpoints, conclusions are not the same. For fidelity-centric viewpoint, the dirty-paper coding methods using biorthogonal codes has very strong advantage to preserve image fidelity and the advantage of capacity performance is also significant. However, from the power ratio point of view, the orthogonalisation methods demonstrate significant advantage on capacity and robustness. The conclusions are contradictory but together, they summarise the performance generated by different design considerations. The synchronisation of watermark is firstly provided by high contrast frames around the watermarked image. The edge detection filters are used to detect the high contrast borders of the captured image. By scanning the pixels from the border to the centre, the locations of detected edges are stored. The optimal linear regression algorithm is used to estimate the watermarked image frames. Estimation of the regression function provides rotation angle as the slope of the rotated frames. The scaling is corrected by re-sampling the upright image to the original size. A theoretically studied method that is able to synchronise captured image to sub-pixel level accuracy is also presented. By using invariant transforms and the "symmetric phase only matched filter" the captured image can be corrected accurately to original geometric size. The method uses repeating watermarks to form an array in the spatial domain of the watermarked image and the the array that the locations of its elements can reveal information of rotation, translation and scaling with two filtering processes

    Study and Implementation of Watermarking Algorithms

    Get PDF
    Water Making is the process of embedding data called a watermark into a multimedia object such that watermark can be detected or extracted later to make an assertion about the object. The object may be an audio, image or video. A copy of a digital image is identical to the original. This has in many instances, led to the use of digital content with malicious intent. One way to protect multimedia data against illegal recording and retransmission is to embed a signal, called digital signature or copyright label or watermark that authenticates the owner of the data. Data hiding, schemes to embed secondary data in digital media, have made considerable progress in recent years and attracted attention from both academia and industry. Techniques have been proposed for a variety of applications, including ownership protection, authentication and access control. Imperceptibility, robustness against moderate processing such as compression, and the ability to hide many bits are the basic but rat..

    Invisible watermarking of digital signals

    Get PDF
    Cílem téhle práce je navrhnutí nových technik pro robustní neviditelné značení digitálních signálů. Nejdříve je prezentován současný stav tohoto odvětví a dostupné softwarové řešení. Poté následuje návrh několika algoritmů pro neviditelné značení, přičemž každý z nich je založen na jiném principu. Dále je připravena sada digitálních testovacích signálů společně s testovacím softwarem pro otestování navržených řešení a jejích porovnání s vybraným dostupným softwarem. Poté následuje srovnání naměřených výsledků, výkonu a jejích diskuze.The aim of this thesis is to propose new techniques for robust invisible watermarking of digital signals. Firstly, state of the art and existing available software solutions are discussed. Then, design of multiple algorithms for invisible watermarking follows, each based on different principle. In order to enable benchmarking, suitable digital signals dataset is prepared. Also, testing benchmark is introduced, empowering multiple known attacks. Each presented solution is then benchmarked, as well as the introduced existing available software solutions for invisible watermarking. Results are then compared and discussed.
    corecore