83 research outputs found

    Security Features in Fingerprint Biometric System

    Get PDF
    Nowadays, embedded systems run in every setting all around the globe. Recent advances in technology have created many sophisticated applications rich with functionality we have never seen. Nonetheless, security and privacy were a common issue for these systems, whether or not sensitive data can be protected from malicious attacks. These concerns are justified on the grounds that the past of security breaches and the resulting consequences narrate horrific stories concerning embedded systems. The attacks are now evolving, becoming more complex with technological advancements. Therefore, a new way of implementing security in embedded systems must be pursued. This paper attempts to demonstrate the incorporation of security features in fingerprint biometric system in the requirements analysis phase, ensuring the same throughout the system life cycle of embedded systems based on case study. The comparison of various biometric technologies such as face, fingerprint, iris, palm print, hand geometry gait, signature, and keystroke is presented. The aim of this paper includes analyzing, decomposing and transforming the threats and counter-measures identified during the requirements analysis using the abuse case into more specific safety requirements or functions. Furthermore, we have shown that the incorporation of security features into the biometric fingerprint system by analyzing the requirements of the system and providing the main steps for the protection of the biometric system in this paper

    Copyright protection for the electronic distribution of text documents

    Get PDF
    Each copy of a text document can be made different in a nearly invisible way by repositioning or modifying the appearance of different elements of text, i.e., lines, words, or characters. A unique copy can be registered with its recipient, so that subsequent unauthorized copies that are retrieved can be traced back to the original owner. In this paper we describe and compare several mechanisms for marking documents and several other mechanisms for decoding the marks after documents have been subjected to common types of distortion. The marks are intended to protect documents of limited value that are owned by individuals who would rather possess a legal than an illegal copy if they can be distinguished. We will describe attacks that remove the marks and countermeasures to those attacks. An architecture is described for distributing a large number of copies without burdening the publisher with creating and transmitting the unique documents. The architecture also allows the publisher to determine the identity of a recipient who has illegally redistributed the document, without compromising the privacy of individuals who are not operating illegally. Two experimental systems are described. One was used to distribute an issue of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, and the second was used to mark copies of company private memoranda

    ID Photograph hashing : a global approach

    No full text
    This thesis addresses the question of the authenticity of identity photographs, part of the documents required in controlled access. Since sophisticated means of reproduction are publicly available, new methods / techniques should prevent tampering and unauthorized reproduction of the photograph. This thesis proposes a hashing method for the authentication of the identity photographs, robust to print-and-scan. This study focuses also on the effects of digitization at hash level. The developed algorithm performs a dimension reduction, based on independent component analysis (ICA). In the learning stage, the subspace projection is obtained by applying ICA and then reduced according to an original entropic selection strategy. In the extraction stage, the coefficients obtained after projecting the identity image on the subspace are quantified and binarized to obtain the hash value. The study reveals the effects of the scanning noise on the hash values of the identity photographs and shows that the proposed method is robust to the print-and-scan attack. The approach focusing on robust hashing of a restricted class of images (identity) differs from classical approaches that address any imageCette thĂšse traite de la question de l’authenticitĂ© des photographies d’identitĂ©, partie intĂ©grante des documents nĂ©cessaires lors d’un contrĂŽle d’accĂšs. Alors que les moyens de reproduction sophistiquĂ©s sont accessibles au grand public, de nouvelles mĂ©thodes / techniques doivent empĂȘcher toute falsification / reproduction non autorisĂ©e de la photographie d’identitĂ©. Cette thĂšse propose une mĂ©thode de hachage pour l’authentification de photographies d’identitĂ©, robuste Ă  l’impression-lecture. Ce travail met ainsi l’accent sur les effets de la numĂ©risation au niveau de hachage. L’algorithme mis au point procĂšde Ă  une rĂ©duction de dimension, basĂ©e sur l’analyse en composantes indĂ©pendantes (ICA). Dans la phase d’apprentissage, le sous-espace de projection est obtenu en appliquant l’ICA puis rĂ©duit selon une stratĂ©gie de sĂ©lection entropique originale. Dans l’étape d’extraction, les coefficients obtenus aprĂšs projection de l’image d’identitĂ© sur le sous-espace sont quantifiĂ©s et binarisĂ©s pour obtenir la valeur de hachage. L’étude rĂ©vĂšle les effets du bruit de balayage intervenant lors de la numĂ©risation des photographies d’identitĂ© sur les valeurs de hachage et montre que la mĂ©thode proposĂ©e est robuste Ă  l’attaque d’impression-lecture. L’approche suivie en se focalisant sur le hachage robuste d’une classe restreinte d’images (d’identitĂ©) se distingue des approches classiques qui adressent une image quelconqu

    DWT image encoding and message correction on printed images

    Get PDF
    As more information gets stored digitally, intellectual property (IP) holders needed a way to protect their content from being reused without their permission. One way that IP holders protect their content is through the use of watermarks which are pieces of information that are embedded in the IP holder’s content. This thesis explores the use and effectiveness of watermarking techniques on printed images. Specifically, this thesis explores techniques to embed printed images with a watermark and to retrieve those same watermarks from photographs of those images. The watermarks found in these images suffer from various different degradation effects which may compromise the message that is being transferred in the paper. To alleviate these degradations, the messages will be encoded into the images using Error Correction Codes that will help the user retrieve some of the information that would be lost as a result of these effects. Experiments are performed using a two-dimensional Discrete Wavelet Transformation and various Error Correction Coding Techniques including repetition Error Correction codes, Hamming encoding, and Reed Solomon encoding schemes. These experiments are performed on various logos.Ope

    Biometric antispoofing methods: A survey in face recognition

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. Galbally, S. Marcel and J. Fierrez, "Biometric Antispoofing Methods", IEEE Access, vol.2, pp. 1530-1552, Dec. 2014In recent decades, we have witnessed the evolution of biometric technology from the rst pioneering works in face and voice recognition to the current state of development wherein a wide spectrum of highly accurate systems may be found, ranging from largely deployed modalities, such as ngerprint, face, or iris, to more marginal ones, such as signature or hand. This path of technological evolution has naturally led to a critical issue that has only started to be addressed recently: the resistance of this rapidly emerging technology to external attacks and, in particular, to spoo ng. Spoo ng, referred to by the term presentation attack in current standards, is a purely biometric vulnerability that is not shared with other IT security solutions. It refers to the ability to fool a biometric system into recognizing an illegitimate user as a genuine one by means of presenting a synthetic forged version of the original biometric trait to the sensor. The entire biometric community, including researchers, developers, standardizing bodies, and vendors, has thrown itself into the challenging task of proposing and developing ef cient protection methods against this threat. The goal of this paper is to provide a comprehensive overview on the work that has been carried out over the last decade in the emerging eld of antispoo ng, with special attention to the mature and largely deployed face modality. The work covers theories, methodologies, state-of-the-art techniques, and evaluation databases and also aims at providing an outlook into the future of this very active eld of research.This work was supported in part by the CAM under Project S2009/TIC-1485, in part by the Ministry of Economy and Competitiveness through the Bio-Shield Project under Grant TEC2012-34881, in part by the TABULA RASA Project under Grant FP7-ICT-257289, in part by the BEAT Project under Grant FP7-SEC-284989 through the European Union, and in part by the CĂĄtedra Universidad AutĂłnoma de Madrid-TelefĂłnica

    CYBERSECURITY FOR INTELLECTUAL PROPERTY: DEVELOPING PRACTICAL FINGERPRINTING TECHNIQUES FOR INTEGRATED CIRCUITRY

    Get PDF
    The system on a chip (SoC) paradigm for computing has become more prevalent in modern society. Because of this, reuse of different functional integrated circuits (ICs), with standardized inputs and outputs, make designing SoC systems easier. As a result, the theft of intellectual property for different ICs has become a highly profitable business. One method of theft-prevention is to add a signature, or fingerprint, to ICs so that they may be tracked after they are sold. The contribution of this dissertation is the creation and simulation of three new fingerprinting methods that can be implemented automatically during the design process. In addition, because manufacturing and design costs are significant, three of the fingerprinting methods presented, attempt to alleviate costs by determining the fingerprint in the post-silicon stage of the VLSI design cycle. Our first two approaches to fingerprint ICs, are to use Observability Don’t Cares (ODCs) and Satisfiability Don’t Cares (SDCs), which are almost always present in ICs, to hide our fingerprint. ODCs cause an IC to ignore certain internal signals, which we can utilize to create fingerprints that have a minimal performance overhead. Using a heuristic approach, we are also able to choose the overhead the gate will have by removing some fingerprint locations. The experiments show that this work is effective and can provide a large number of fingerprints for more substantial circuits, with a minimal overhead. SDCs are similar to ODCs except that they focus on input patterns, to gates, that cannot exist. For this work, we found a way to quickly locate most of the SDCs in a circuit and depending on the input patterns that we know will not occur, replace the gates to create a fingerprint with a minimal overhead. We also created two methods to implement this SDC fingerprinting method, each with their own advantages and disadvantages. Both the ODC and SDC fingerprinting methods can be implemented in the circuit design or physical design of the IC, and finalized in the post-silicon phase, thus reducing the cost of manufacturing several different circuits. The third method developed for this dissertation was based on our previous work on finite state machine (FSM) protection to generate a fingerprint. We show that we can edit ICs with incomplete FSMs by adding additional transitions from the set of don’t care transitions. Although the best candidates for this method are those with unused states and transitions, additional states can be added to the circuit to generate additional don’t care transitions and states, useful for generating more fingerprints. This method has the potential for an astronomical number of fingerprints, but the generated fingerprints need to be filtered for designs that have an acceptable design overhead in comparison to the original circuit. Our fourth and final method for IC fingerprinting utilizes scan-chains which help to monitor the internal state of a sequential circuit. By modifying the interconnects between flip flops in a scan chain we can create unique fingerprints that are easy to detect by the user. These modifications are done after the design for test and during the fabrication stage, which helps reduce redesign overhead. These changes can also be finalized in the post-silicon stage, similar to the work for the ODC and SDC fingerprinting, to minimize manufacturing costs. The hope with this dissertation is to demonstrate that these methods for generating fingerprints, for ICs, will improve upon the current state of the art. First, these methods will create a significant number of unique fingerprints. Second, they will create fingerprints that have an acceptable overhead and are easy to detect by the developer and are harder to detect or remove by the adversary. Finally, we show that three of the methods will reduce the cost of manufacturing by being able to be implemented in the later stages of their design cycle

    Biometric Spoofing: A JRC Case Study in 3D Face Recognition

    Get PDF
    Based on newly available and affordable off-the-shelf 3D sensing, processing and printing technologies, the JRC has conducted a comprehensive study on the feasibility of spoofing 3D and 2.5D face recognition systems with low-cost self-manufactured models and presents in this report a systematic and rigorous evaluation of the real risk posed by such attacking approach which has been complemented by a test campaign. The work accomplished and presented in this report, covers theories, methodologies, state of the art techniques, evaluation databases and also aims at providing an outlook into the future of this extremely active field of research.JRC.G.6-Digital Citizen Securit
    • 

    corecore