4,038 research outputs found

    Sphynx: ReLU-Efficient Network Design for Private Inference

    Full text link
    The emergence of deep learning has been accompanied by privacy concerns surrounding users' data and service providers' models. We focus on private inference (PI), where the goal is to perform inference on a user's data sample using a service provider's model. Existing PI methods for deep networks enable cryptographically secure inference with little drop in functionality; however, they incur severe latency costs, primarily caused by non-linear network operations (such as ReLUs). This paper presents Sphynx, a ReLU-efficient network design method based on micro-search strategies for convolutional cell design. Sphynx achieves Pareto dominance over all existing private inference methods on CIFAR-100. We also design large-scale networks that support cryptographically private inference on Tiny-ImageNet and ImageNet

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)

    Characterizing and Optimizing End-to-End Systems for Private Inference

    Full text link
    Increasing privacy concerns have given rise to Private Inference (PI). In PI, both the client's personal data and the service provider's trained model are kept confidential. State-of-the-art PI protocols combine several cryptographic primitives: Homomorphic Encryption (HE), Secret Sharing (SS), Garbled Circuits (GC), and Oblivious Transfer (OT). Today, PI remains largely arcane and too slow for practical use, despite the need and recent performance improvements. This paper addresses PI's shortcomings with a detailed characterization of a standard high-performance protocol to build foundational knowledge and intuition in the systems community. The characterization pinpoints all sources of inefficiency -- compute, communication, and storage. A notable aspect of this work is the use of inference request arrival rates rather than studying individual inferences in isolation. Prior to this work, and without considering arrival rate, it has been assumed that PI pre-computations can be handled offline and their overheads ignored. We show this is not the case. The offline costs in PI are so high that they are often incurred online, as there is insufficient downtime to hide pre-compute latency. We further propose three optimizations to address the computation (layer-parallel HE), communication (wireless slot allocation), and storage (Client-Garbler) overheads leveraging insights from our characterization. Compared to the state-of-the-art PI protocol, the optimizations provide a total PI speedup of 1.8×\times, with the ability to sustain inference requests up to a 2.24×\times greater rate.Comment: 12 figure

    Design of an electrochemical micromachining machine

    Get PDF
    Electrochemical micromachining (ÎŒECM) is a non-conventional machining process based on the phenomenon of electrolysis. ÎŒECM became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications including microfluidics systems, stress-free drilled holes in automotive and aerospace manufacturing with complex shapes, etc. This work presents the design of a next generation ÎŒECM machine for the automotive, aerospace, medical and metrology sectors. It has three axes of motion (X, Y, Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2-nm resolution encoders for ultra precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. This machine features two process control algorithms: fuzzy logic control and adaptive feed rate. A self-developed pulse generator has been mounted and interfaced with the machine and a wire ECM grinding device has been added. The pulse generator has the possibility to reverse the pulse polarity for on-line tool fabrication.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMPICT- FoF-285614)

    Introduction

    Get PDF
    What is critical thinking, especially in the context of higher education? How have research and scholarship on the matter developed over recent past decades? What is the current state of the art here? How might the potential of critical thinking be enhanced? What kinds of teaching are necessary in order to realize that potential? And just why is this topic important now? These are the key questions motivating this volume. We hesitate to use terms such as “comprehensive” or “complete” or “definitive,” but we believe that, taken in the round, the chapters in this volume together offer a fair insight into the contemporary understandings of higher education worldwide. We also believe that this volume is much needed, and we shall try to justify that claim in this introduction

    A Model of Critical Thinking in Higher Education

    Get PDF
    “Critical thinking in higher education” is a phrase that means many things to many people. It is a broad church. Does it mean a propensity for finding fault? Does it refer to an analytical method? Does it mean an ethical attitude or a disposition? Does it mean all of the above? Educating to develop critical intellectuals and the Marxist concept of critical consciousness are very different from the logician’s toolkit of finding fallacies in passages of text, or the practice of identifying and distinguishing valid from invalid syllogisms. Critical thinking in higher education can also encompass debates about critical pedagogy, i.e., political critiques of the role and function of education in society, critical feminist approaches to curriculum, issues related to what has become known as critical citizenship, or any other education-related topic that uses the appellation “critical”. Equally, it can, and usually does, refer to the importance and centrality of developing general skills in reasoning—skills that we hope all graduates possess. Yet, despite more than four decades of dedicated scholarly work “critical thinking” remains as elusive as ever. As a concept, it is, as Raymond Williams has noted, a ‘most difficult one’ (Williams, 1976, p. 74)

    Methods for anticipating governance breakdown and violent conflict

    Get PDF
    In this paper, authors Sarah Bressan, HĂ„vard Mokleiv NygĂ„rd, and Dominic Seefeldt present the evolution and state of the art of both quantitative forecasting and scenario-based foresight methods that can be applied to help prevent governance breakdown and violent conflict in Europe’s neighbourhood. In the quantitative section, they describe the different phases of conflict forecasting in political science and outline which methodological gaps EU-LISTCO’s quantitative sub-national prediction tool will address to forecast tipping points for violent conflict and governance breakdown. The qualitative section explains EU-LISTCO’s scenario-based foresight methodology for identifying potential tipping points. After comparing both approaches, the authors discuss opportunities for methodological advancements across the boundaries of quantitative forecasting and scenario-based foresight, as well as how they can inform the design of strategic policy options
    • 

    corecore