320,647 research outputs found

    Trust conceptualized as a corporate knowledge asset

    Get PDF
    To most individuals, "trust" can be viewed as a knowledge corporate asset that may add, or rest, value to the company. The role of knowledge in achieving a competitive advantage is becoming and increasingly important management issue in all business and non-business sectors. As such, our Throughput Modeling approach indicates how six different trust behaviors can be guided, how trust decision making can be improved and made defensible, and how special problems facing individuals can be dealt with via decision-making pathways leading to an action

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    The role of the individual in the coming era of process-based therapy

    Get PDF
    For decades the development of evidence-based therapy has been based on experimental tests of protocols designed to impact psychiatric syndromes. As this paradigm weakens, a more process-based therapy approach is rising in its place, focused on how to best target and change core biopsychosocial processes in specific situations for given goals with given clients. This is an inherently more idiographic question than has normally been at issue in evidence-based therapy over the last few decades. In this article we explore methods of assessment and analysis that can integrate idiographic and nomothetic approaches in a process-based era.Accepted manuscrip

    Designing for interaction

    Get PDF
    At present, the design of computer-supported group-based learning (CS)GBL) is often based on subjective decisions regarding tasks, pedagogy and technology, or concepts such as ‘cooperative learning’ and ‘collaborative learning’. Critical review reveals these concepts as insufficiently substantial to serve as a basis for (CS)GBL design. Furthermore, the relationship between outcome and group interaction is rarely specified a priori. Thus, there is a need for a more systematic approach to designing (CS)GBL that focuses on the elicitation of expected interaction processes. A framework for such a process-oriented methodology is proposed. Critical elements that affect interaction are identified: learning objectives, task-type, level of pre-structuring, group size and computer support. The proposed process-oriented method aims to stimulate designers to adopt a more systematic approach to (CS)GBL design according to the interaction expected, while paying attention to critical elements that affect interaction. This approach may bridge the gap between observed quality of interaction and learning outcomes and foster (CS)GBL design that focuses on the heart of the matter: interaction

    A review of human factors principles for the design and implementation of medication safety alerts in clinical information systems.

    Get PDF
    The objective of this review is to describe the implementation of human factors principles for the design of alerts in clinical information systems. First, we conduct a review of alarm systems to identify human factors principles that are employed in the design and implementation of alerts. Second, we review the medical informatics literature to provide examples of the implementation of human factors principles in current clinical information systems using alerts to provide medication decision support. Last, we suggest actionable recommendations for delivering effective clinical decision support using alerts. A review of studies from the medical informatics literature suggests that many basic human factors principles are not followed, possibly contributing to the lack of acceptance of alerts in clinical information systems. We evaluate the limitations of current alerting philosophies and provide recommendations for improving acceptance of alerts by incorporating human factors principles in their design

    Platonic model of mind as an approximation to neurodynamics

    Get PDF
    Hierarchy of approximations involved in simplification of microscopic theories, from sub-cellural to the whole brain level, is presented. A new approximation to neural dynamics is described, leading to a Platonic-like model of mind based on psychological spaces. Objects and events in these spaces correspond to quasi-stable states of brain dynamics and may be interpreted from psychological point of view. Platonic model bridges the gap between neurosciences and psychological sciences. Static and dynamic versions of this model are outlined and Feature Space Mapping, a neurofuzzy realization of the static version of Platonic model, described. Categorization experiments with human subjects are analyzed from the neurodynamical and Platonic model points of view

    Metacognition and transfer within a course or instructional design rules and metacognition

    Get PDF
    A metacognitive strategy for doing research, included transfer, was taught in a course of nine afternoons. The success of this course raised some questions. How do the students learn? How does metacognition play a role? The course was designed in accordance with several instructional principles. The course was divided into three domains in which the strategy was introduced, practised, and applied respectively. Literature research revealed four possible metacognitive variants that correlate so it was supposed that implementing them all helped to reach the objectives of the course. The relation of the metacognitive variants with the instructional principles is described. To study learning the students were divided into three groups (weak, moderate, good) by their marks for other courses. The performance of the groups in each domain was monitored by their marks, scoring of metacognitive skills, questionnaires, observations, and time keeping. The moderate students scored as high as the good ones for the strategy in the last domain, a unique result. The metacognitive development of the other metacognitive skills was not linear. The conclusions are that the success of this course can be explained by a system of double sequencing and an interaction of all metacognitive variants, and that instructional design rules for metacognitive and cognitive objectives are differen

    Instructional strategies and tactics for the design of introductory computer programming courses in high school

    Get PDF
    This article offers an examination of instructional strategies and tactics for the design of introductory computer programming courses in high school. We distinguish the Expert, Spiral and Reading approach as groups of instructional strategies that mainly differ in their general design plan to control students' processing load. In order, they emphasize topdown program design, incremental learning, and program modification and amplification. In contrast, tactics are specific design plans that prescribe methods to reach desired learning outcomes under given circumstances. Based on ACT* (Anderson, 1983) and relevant research, we distinguish between declarative and procedural instruction and present six tactics which can be used both to design courses and to evaluate strategies. Three tactics for declarative instruction involve concrete computer models, programming plans and design diagrams; three tactics for procedural instruction involve worked-out examples, practice of basic cognitive skills and task variation. In our evaluation of groups of instructional strategies, the Reading approach has been found to be superior to the Expert and Spiral approaches

    Parameter analysis of copper-nickel-tungsten prepared via powder metallurgy process for electrical discharge machining of polycrystalline diamond

    Get PDF
    Polycrystalline Diamond (PCD) tools have an outstanding wear resistance. The electric conductivity of PCD caused by the conductive binding material (Cobalt) makes it possible to machine PCD tools with EDM. Electrode used in EDM of PCD must have better porosity, electrical and thermal conductivity. Therefore, this research presents the works in production of Cu-Ni-W electrode by powder metallurgy route. Production of powder metallurgy parts involve mixing of the powder with additives or lubricants, compacting the mixture and heating the green compacts in an Argon gas furnace so the particle bond to each other. Two levels of full factorial with six centre points and two replication technique was used to study the influence of main and interaction effects of the powder metallurgy parameter. There were four factors involved in this experiment. Factor A which is Type of Cu-Ni; Type A and Type B was defined as categorical factor. Factor B in which Composition of W; 5 Wt.%, 15 Wt. % and 25 Wt.%, was defined as numerical factor. Factor C which is the Compaction load; 7, 8 and 9 tonne and Factor D which is Sintering temperature; 635 ℃, 685 ℃ and 735 ℃ were also defined as numerical factor. Optical Microscope, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) was used to analysed the microstructure and surface morphology of Cu-Ni-W electrode. The best parameter combination to produced better porosity, electrical and thermal conductivity for both Type A and Type B was 5 Wt.% of W, compaction load at 9 tonne and sintering temperature at 735℃. The best response for Type A is 12.65% of porosity, 14.40 IACS% of electrical conductivity and 413.26 W/m.℃ of thermal conductivity. While that, the best response for Type B were 9.36% of porosity, 16.66 IACS% of electrical conductivity and 345.21W/m.℃ of thermal conductivity. From the calculation of Maxwell’s Equation, Type A and Type B had the highest electrical conductivity of 58.48 IACS% and 77.35 IACS% respectively at W content of 5Wt.%. Type A and Type B also had the highest thermal conductivity of 369.86 W/m.℃ and 310.24 W/m.℃ respectively at W content of 5 Wt.%. Besides that, thermal conductivity also increased with the temperature increased until 450℃
    • 

    corecore