3,748 research outputs found

    Criteria for Designing Testability in Software Systems

    Get PDF

    A research review of quality assessment for software

    Get PDF
    Measures were recommended to assess the quality of software submitted to the AdaNet program. The quality factors that are important to software reuse are explored and methods of evaluating those factors are discussed. Quality factors important to software reuse are: correctness, reliability, verifiability, understandability, modifiability, and certifiability. Certifiability is included because the documentation of many factors about a software component such as its efficiency, portability, and development history, constitute a class for factors important to some users, not important at all to other, and impossible for AdaNet to distinguish between a priori. The quality factors may be assessed in different ways. There are a few quantitative measures which have been shown to indicate software quality. However, it is believed that there exists many factors that indicate quality and have not been empirically validated due to their subjective nature. These subjective factors are characterized by the way in which they support the software engineering principles of abstraction, information hiding, modularity, localization, confirmability, uniformity, and completeness

    Design for validation: An approach to systems validation

    Get PDF
    Every complex system built is validated in some manner. Computer validation begins with review of the system design. As systems became too complicated for one person to review, validation began to rely on the application of adhoc methods by many individuals. As the cost of the changes mounted and the expense of failure increased, more organized procedures became essential. Attempts at devising and carrying out those procedures showed that validation is indeed a difficult technical problem. The successful transformation of the validation process into a systematic series of formally sound, integrated steps is necessary if the liability inherent in the future digita-system-based avionic and space systems is to be minimized. A suggested framework and timetable for the transformtion are presented. Basic working definitions of two pivotal ideas (validation and system life-cyle) are provided and show how the two concepts interact. Many examples are given of past and present validation activities by NASA and others. A conceptual framework is presented for the validation process. Finally, important areas are listed for ongoing development of the validation process at NASA Langley Research Center

    Integrating IVHM and Asset Design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collection of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Integrating IVHM and asset design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collecting of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Testability Assessment Model for Object Oriented Software based on Internal and External Quality Factors

    Get PDF
    Software testability is coming out to be most frequent talked about subject then the underrated and unpopular quality factor it used to be in past few years. The correct and timely assessment of testability can lead to improvisation of software testing process. Though many researchers and quality controllers have proved its importance, but still the research has not gained much momentum in emphasizing the need of making testability analysis necessary during all software development phases. In this paper we review and analyse the factors affecting testability estimation of object oriented software systems during design and analysis phase of development life cycle. These factors are then linked together in the form of new assessment model for object oriented software testability. The proposed model will be evaluated using analytical hierarchical process (AHP)

    Reactive Microservices - An Experiment

    Get PDF
    Os microserviços são geralmente adotados quando a escalabilidade e flexibilidade de uma aplicação são essenciais para o seu sucesso. Apesar disto, as dependências entre serviços transmitidos através de protocolos síncronos, resultam numa única falha que pode afetar múltiplos microserviços. A adoção da capacidade de resposta numa arquitetura baseada em microserviços, através da reatividade, pode facilitar e minimizar a proliferação de erros entre serviços e na comunicação entre eles, ao dar prioridade à capacidade de resposta e à resiliência de um serviço. Esta dissertação fornece uma visão geral do estado da arte dos microserviços reativos, estruturada através de um processo de mapeamento sistemático, onde são analisados os seus atributos de qualidade mais importantes, os seus erros mais comuns, as métricas mais adequadas para a sua avaliação, e as frameworks mais relevantes. Com a informação recolhida, é apresentado o valor deste trabalho, onde a decisão do projeto e a framework a utilizar são tomadas, através da técnica de preferência de ordem por semelhança com a solução ideal e o processo de hierarquia analítica, respetivamente. Em seguida, é realizada a análise e o desenho da solução, para o respetivo projeto, onde se destacam as alterações arquiteturais necessárias para o converter num projeto de microserviços reativo. Em seguida, descreve-se a implementação da solução, começando pela configuração do projeto necessária para agilizar o processo de desenvolvimento, seguida dos principais detalhes de implementação utilizados para assegurar a reatividade e como a framework apoia e simplifica a sua implementação, finalizada pela configuração das ferramentas de métricas no projeto para apoiar os testes e a avaliação da solução. Em seguida, a validação da solução é investigada e executada com base na abordagem Goals, Questions, Metrics (GQM), para estruturar a sua análise relativamente à manutenção, escalabilidade, desempenho, testabilidade, disponibilidade, monitorabilidade e segurança, finalizada pela conclusão do trabalho global realizado, onde são listadas as contribuições, ameaças à validade e possíveis trabalhos futuros.Microservices are generally adopted when the scalability and flexibility of an application are essential to its success. Despite this, dependencies between services transmitted through synchronous protocols result in one failure, potentially affecting multiple microservices. The adoption of responsiveness in a microservices-based architecture, through reactivity, can facilitate and minimize the proliferation of errors between services and in the communication between them by prioritizing the responsiveness and resilience of a service. This dissertation provides an overview of the reactive microservices state of the art, structured through a systematic mapping process, where its most important quality attributes, pitfalls, metrics, and most relevant frameworks are analysed. With the gathered information, the value of this work is presented, where the project and framework decision are made through the technique of order preference by similarity to the ideal solution and the analytic hierarchy process, respectively. Then, the analysis and design of the solution are idealized for the respective project, where the necessary architectural changes are highlighted to convert it to a reactive microservices project. Next, the solution implementation is described, starting with the necessary project setup to speed up the development process, followed by the key implementation details employed to ensure reactivity and how the framework streamlines its implementation, finalized by the metrics tools setup in the project to support the testing and evaluation of the solution. Then, the solution validation is traced and executed based on the Goals, Questions, Metrics (GQM) approach to structure its analysis regarding maintainability, scalability, performance, testability, availability, monitorability, and security, finalized by the conclusion of the overall work done, where the contributions, threats to validity and possible future work are listed

    Supporting End-User Development through a New Composition Model: An Empirical Study

    Get PDF
    End-user development (EUD) is much hyped, and its impact has outstripped even the most optimistic forecasts. Even so, the vision of end users programming their own solutions has not yet materialized. This will continue to be so unless we in both industry and the research community set ourselves the ambitious challenge of devising end to end an end-user application development model for developing a new age of EUD tools. We have embarked on this venture, and this paper presents the main insights and outcomes of our research and development efforts as part of a number of successful EU research projects. Our proposal not only aims to reshape software engineering to meet the needs of EUD but also to refashion its components as solution building blocks instead of programs and software developments. This way, end users will really be empowered to build solutions based on artefacts akin to their expertise and understanding of ideal solution
    corecore