388 research outputs found

    SUNNY-CP and the MiniZinc Challenge

    Get PDF
    In Constraint Programming (CP) a portfolio solver combines a variety of different constraint solvers for solving a given problem. This fairly recent approach enables to significantly boost the performance of single solvers, especially when multicore architectures are exploited. In this work we give a brief overview of the portfolio solver sunny-cp, and we discuss its performance in the MiniZinc Challenge---the annual international competition for CP solvers---where it won two gold medals in 2015 and 2016. Under consideration in Theory and Practice of Logic Programming (TPLP)Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    A Partitioning Algorithm for Maximum Common Subgraph Problems

    Get PDF
    We introduce a new branch and bound algorithm for the maximum common subgraph and maximum common connected subgraph problems which is based around vertex labelling and partitioning. Our method in some ways resembles a traditional constraint programming approach, but uses a novel compact domain store and supporting inference algorithms which dramatically reduce the memory and computation requirements during search, and allow better dual viewpoint ordering heuristics to be calculated cheaply. Experiments show a speedup of more than an order of magnitude over the state of the art, and demonstrate that we can operate on much larger graphs without running out of memory

    Between Subgraph Isomorphism and Maximum Common Subgraph

    Get PDF
    When a small pattern graph does not occur inside a larger target graph, we can ask how to find "as much of the pattern as possible" inside the target graph. In general, this is known as the maximum common subgraph problem, which is much more computationally challenging in practice than subgraph isomorphism. We introduce a restricted alternative, where we ask if all but k vertices from the pattern can be found in the target graph. This allows for the development of slightly weakened forms of certain invariants from subgraph isomorphism which are based upon degree and number of paths. We show that when k is small, weakening the invariants still retains much of their effectiveness. We are then able to solve this problem on the standard problem instances used to benchmark subgraph isomorphism algorithms, despite these instances being too large for current maximum common subgraph algorithms to handle. Finally, by iteratively increasing k, we obtain an algorithm which is also competitive for the maximum common subgraph

    Incremental Maximum Satisfiability

    Get PDF
    Peer reviewe

    Generating Random Instances of Weighted Model Counting:An Empirical Analysis with Varying Primal Treewidth

    Get PDF

    An adaptive CP method for TSP solving

    Get PDF
    M. Sellmann showed that CP-based Lagrangian relaxation gave good results but the interactions between the two techniques were quite dicult to understand. There are two main reasons for this: the best multipliers do not lead to the best ltering and each ltering disrupts the Lagrangian multiplier problem (LMP) to be solved. As the resolution of the TSP in CP is mainly based on a Lagrangian relaxation, we propose to study in detail these interactions for this particular problem. This article experimentally conrms the above statements and shows that it is very dicult to establish any relationship between ltering and the method used to solve the LMP in practice. Thus, it seems very dicult to select a priori the best method suited for a given instance. We propose to use a multi-armed bandit algorithm to nd the best possible method to use. The experimental results show the advantages of our approach
    corecore