171 research outputs found

    A hybrid unsupervised approach toward EEG epileptic spikes detection

    Get PDF
    Epileptic spikes are complementary sources of information in EEG to diagnose and localize the origin of epilepsy. However, not only is visual inspection of EEG labor intensive, time consuming, and prone to human error, but it also needs long-term training to acquire the level of skill required for identifying epileptic discharges. Therefore, computer-aided approaches were employed for the purpose of saving time and increasing the detection and source localization accuracy. One of the most important artifacts that may be confused as an epileptic spike, due to morphological resemblance, is eye blink. Only a few studies consider removal of this artifact prior to detection, and most of them used either visual inspection or computer-aided approaches, which need expert supervision. Consequently, in this paper, an unsupervised and EEG-based system with embedded eye blink artifact remover is developed to detect epileptic spikes. The proposed system includes three stages: eye blink artifact removal, feature extraction, and classification. Wavelet transform was employed for both artifact removal and feature extraction steps, and adaptive neuro-fuzzy inference system for classification purpose. The proposed method is verified using a publicly available EEG dataset. The results show the efficiency of this algorithm in detecting epileptic spikes using low-resolution EEG with least computational complexity, highest sensitivity, and lesser human interaction compared to similar studies. Moreover, since epileptic spike detection is a vital component of epilepsy source localization, therefore this algorithm can be utilized for EEG-based pre-surgical evaluation of epilepsy

    Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies

    Get PDF
    Epileptic seizures are one of the most crucial neurological disorders, and their early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques is introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable- Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best set for various tasks. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.7

    An Enhanced Automated Epileptic Seizure Detection Using ANFIS, FFA and EPSO Algorithms

    Get PDF
    Objectives: Electroencephalogram (EEG) signal   gives   a   viable perception about the neurological action of the human brain that aids the detection of epilepsy. The objective of this study is to build an accurate automated hybrid model for epileptic seizure detection. Methods: This work develops a computer-aided diagnosis (CAD) machine learning model which can spontaneously classify pre-ictal and ictal EEG signals. In the proposed method two most effective nature inspired algorithms, Firefly algorithm (FFA) and Efficient Particle Swarm Optimization (EPSO) are used to determine the optimum parameters of Adaptive Neuro Fuzzy Inference System (ANFIS) network. Results: Compared to the FFA and EPSO algorithm separately, the composite (ANFIS+FFA+EPSO) optimization algorithm outperforms in all respects. The proposed technique achieved accuracy, specificity, and sensitivity of 99.87%, 98.71% and 100% respectively. Conclusion: The ANFIS-FFA-EPSO method is able to enhance the seizure detection outcomes for demand forecast in hospital

    Data mining an EEG dataset with an emphasis on dimensionality reduction

    Get PDF
    The human brain is obviously a complex system, and exhibits rich spatiotemporal dynamics. Among the non-invasive techniques for probing human brain dynamics, electroencephalography (EEG) provides a direct measure of cortical activity with millisecond temporal resolution. Early attempts to analyse EEG data relied on visual inspection of EEG records. Since the introduction of EEG recordings, the volume of data generated from a study involving a single patient has increased exponentially. Therefore, automation based on pattern classification techniques have been applied with considerable success. In this study, a multi-step approach for the classification of EEG signal has been adopted. We have analysed sets of EEG time series recording from healthy volunteers with open eyes and intracranial EEG recordings from patients with epilepsy during ictal (seizure) periods. In the present work, we have employed a discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time - that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. Principal components analysis (PCA) and rough sets have been used to reduce the data dimensionality. A multi-classifier scheme consists of LVQ2.1 neural networks have been developed for the classification task. The experimental results validated the proposed methodology

    Biomimetic Based EEG Learning for Robotics Complex Grasping and Dexterous Manipulation

    Get PDF
    There have been tremendous efforts to understand the biological nature of human grasping, in such a way that it can be learned and copied to prosthesis–robotics and dextrous grasping applications. Several biomimetic methods and techniques have been adopted, hence applied to analytically comprehend ways human performs grasping to duplicate human knowledge. A major topic for further study, is related to decoding the resulting EEG brainwaves during motorizing of fingers and moving parts. To accomplish this, there are a number of phases that are performed, including recording, pre-processing, filtration, and understanding of the waves. However, there are two important phases that have received substantial research attentions. The classification and decoding, of such massive and complex brain waves, as they are two important steps towards understanding patterns during grasping. In this respect, the fundamental objective of this research is to demonstrate how to employ advanced pattern recognition methods, like fuzzy c-mean clustering for understanding resulting EEG brain waves, in such a way to control a prosthesis or robotic hand, while relying sets of detected EEG brainwaves. There are a number of decoding and classification methods and techniques, however we shall look into fuzzy based clustering blended with principle component analysis (PAC) technique to help for the decoding mechanism. EEG brainwaves during a grasping and manipulation have been used for this analysis. This involves, movement of almost five fingers during a grasping defined task. The study has found that, it is not a straight forward task to decode all human fingers motions, as due to the complexity of grasping tasks. However, the adopted analysis was able to classify and identify the different narrowly performed and related fundamental events during a simple grasping task

    In-Network Data Reduction Approach Based On Smart Sensing

    Get PDF
    The rapid advances in wireless communication and sensor technologies facilitate the development of viable mobile-Health applications that boost opportunity for ubiquitous real- time healthcare monitoring without constraining patients' activities. However, remote healthcare monitoring requires continuous sensing for different analog signals which results in generating large volumes of data that needs to be processed, recorded, and transmitted. Thus, developing efficient in-network data reduction techniques is substantial in such applications. In this paper, we propose an in-network approach for data reduction, which is based on fuzzy formal concept analysis. The goal is to reduce the amount of data that is transmitted, by keeping the minimal-representative data for each class of patients. Using such an approach, the sender can effectively reconfigure its transmission settings by varying the target precision level while maintaining the required application classification accuracy. Our results show the excellent performance of the proposed scheme in terms of data reduction gain and classification accuracy, and the advantages that it exhibits with respect to state-of-the-art techniques.Scopu

    EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.

    Full text link
    Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact with the environment. Recent advancements in technology and machine learning algorithms have increased interest in electroencephalographic (EEG)-based BCI applications. EEG-based intelligent BCI systems can facilitate continuous monitoring of fluctuations in human cognitive states under monotonous tasks, which is both beneficial for people in need of healthcare support and general researchers in different domain areas. In this review, we survey the recent literature on EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensating for the gaps in the systematic summary of the past five years. Specifically, we first review the current status of BCI and signal sensing technologies for collecting reliable EEG signals. Then, we demonstrate state-of-the-art computational intelligence techniques, including fuzzy models and transfer learning in machine learning and deep learning algorithms, to detect, monitor, and maintain human cognitive states and task performance in prevalent applications. Finally, we present a couple of innovative BCI-inspired healthcare applications and discuss future research directions in EEG-based BCI research
    • …
    corecore