20,001 research outputs found

    Robust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition

    Get PDF
    This paper deals with the rotation synchronization problem, which arises in global registration of 3D point-sets and in structure from motion. The problem is formulated in an unprecedented way as a "low-rank and sparse" matrix decomposition that handles both outliers and missing data. A minimization strategy, dubbed R-GoDec, is also proposed and evaluated experimentally against state-of-the-art algorithms on simulated and real data. The results show that R-GoDec is the fastest among the robust algorithms.Comment: The material contained in this paper is part of a manuscript submitted to CVI

    Covariance Eigenvector Sparsity for Compression and Denoising

    Full text link
    Sparsity in the eigenvectors of signal covariance matrices is exploited in this paper for compression and denoising. Dimensionality reduction (DR) and quantization modules present in many practical compression schemes such as transform codecs, are designed to capitalize on this form of sparsity and achieve improved reconstruction performance compared to existing sparsity-agnostic codecs. Using training data that may be noisy a novel sparsity-aware linear DR scheme is developed to fully exploit sparsity in the covariance eigenvectors and form noise-resilient estimates of the principal covariance eigenbasis. Sparsity is effected via norm-one regularization, and the associated minimization problems are solved using computationally efficient coordinate descent iterations. The resulting eigenspace estimator is shown capable of identifying a subset of the unknown support of the eigenspace basis vectors even when the observation noise covariance matrix is unknown, as long as the noise power is sufficiently low. It is proved that the sparsity-aware estimator is asymptotically normal, and the probability to correctly identify the signal subspace basis support approaches one, as the number of training data grows large. Simulations using synthetic data and images, corroborate that the proposed algorithms achieve improved reconstruction quality relative to alternatives.Comment: IEEE Transcations on Signal Processing, 2012 (to appear
    • …
    corecore