25,736 research outputs found

    Robust computation of linear models by convex relaxation

    Get PDF
    Consider a dataset of vector-valued observations that consists of noisy inliers, which are explained well by a low-dimensional subspace, along with some number of outliers. This work describes a convex optimization problem, called REAPER, that can reliably fit a low-dimensional model to this type of data. This approach parameterizes linear subspaces using orthogonal projectors, and it uses a relaxation of the set of orthogonal projectors to reach the convex formulation. The paper provides an efficient algorithm for solving the REAPER problem, and it documents numerical experiments which confirm that REAPER can dependably find linear structure in synthetic and natural data. In addition, when the inliers lie near a low-dimensional subspace, there is a rigorous theory that describes when REAPER can approximate this subspace.Comment: Formerly titled "Robust computation of linear models, or How to find a needle in a haystack

    High breakdown estimators for principal components: the projection-pursuit approach revisited.

    Get PDF
    Li and Chen (J. Amer. Statist. Assoc. 80 (1985) 759) proposed a method for principal components using projection-pursuit techniques. In classical principal components one searches for directions with maximal variance, and their approach consists of replacing this variance by a robust scale measure. Li and Chen showed that this estimator is consistent, qualitative robust and inherits the breakdown point of the robust scale estimator. We complete their study by deriving the influence function of the estimators for the eigenvectors, eigenvalues and the associated dispersion matrix. Corresponding Gaussian efficiencies are presented as well. Asymptotic normality of the estimators has been treated in a paper of Cui et al. (Biometrika 90 (2003) 953), complementing the results of this paper. Furthermore, a simple explicit version of the projection-pursuit based estimator is proposed and shown to be fast to compute, orthogonally equivariant, and having the maximal finite-sample breakdown point property. We will illustrate the method with a real data example. (c) 2004 Elsevier Inc. All rights reserved.breakdown point; dispersion matrix; influence function; principal components analysis; projection-pursuit; robustness; dispersion matrices; s-estimators; robust; covariance; location; scale;

    Rotated Spectral Principal Component Analysis (rsPCA) for Identifying Dynamical Modes of Variability in Climate Systems.

    Get PDF
    Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatiotemporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable trade-off between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the interpretation of the sPCA results. We propose herein a simple nonparametric implementation of sPCA using the continuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To improve the interpretability of the results, especially when several modes of similar amplitude exist within the same frequency band, we propose a rotation of the complex-valued eigenvectors to optimize their spatial regularity (smoothness). The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and shows impressive performance even with high levels of noise in the data. Applied to global historical geopotential height (GPH) and sea surface temperature (SST) daily time series, the method accurately captures patterns of atmospheric Rossby waves at high frequencies (3-60-day periods) in both GPH and SST and El Niño-Southern Oscillation (ENSO) at low frequencies (2-7-yr periodicity) in SST. At high frequencies the rsPCA successfully unmixes the identified waves, revealing spatially coherent patterns with robust propagation dynamics
    corecore