4,041 research outputs found

    Analysis of the Numerical Solutions of the Elder Problem Using Big Data and Machine Learning

    Get PDF
    In this study, the numerical solutions to the Elder problem are analyzed using Big Data technologies and data-driven approaches. The steady-state solutions to the Elder problem are investigated with regard to Rayleigh numbers (Ra), grid sizes, perturbations, and other parameters of the system studied. The complexity analysis is carried out for the datasets containing different solutions to the Elder problem, and the time of the highest complexity of numerical solutions is estimated. An approach to the identification of transient fingers and the visualization of large ensembles of solutions is proposed. Predictive models are developed to forecast steady states based on early-time observations. These models are classified into three possible types depending on the features (predictors) used in a model. The numerical results of the prediction accuracy are given, including the estimated confidence intervals for the accuracy, and the estimated time of 95% predictability. Different solutions, their averages, principal components, and other parameters are visualized.publishedVersio

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Comparative study of state-of-the-art machine learning models for analytics-driven embedded systems

    Get PDF
    Analytics-driven embedded systems are gaining foothold faster than ever in the current digital era. The innovation of Internet of Things(IoT) has generated an entire ecosystem of devices, communicating and exchanging data automatically in an interconnected global network. The ability to efficiently process and utilize the enormous amount of data being generated from an ensemble of embedded devices like RFID tags, sensors etc., enables engineers to build smart real-world systems. Analytics-driven embedded system explores and processes the data in-situ or remotely to identify a pattern in the behavior of the system and in turn can be used to automate actions and embark decision making capability to a device. Designing an intelligent data processing model is paramount for reaping the benefits of data analytics, because a poorly designed analytics infrastructure would degrade the system’s performance and effectiveness. There are many different aspects of this data that make it a more complex and challenging analytics task and hence a suitable candidate for big data. Big data is mainly characterized by its high volume, hugely varied data types and high speed of data receipt; all these properties mandate the choice of correct data mining techniques to be used for designing the analytics model. Datasets with images like face recognition, satellite images would perform better with deep learning algorithms, time-series datasets like sensor data from wearable devices would give better results with clustering and supervised learning models. A regression model would suit best for a multivariate dataset like appliances energy prediction data, forest fire data etc. Each machine learning task has a varied range of algorithms which can be used in combination to create an intelligent data analysis model. In this study, a comprehensive comparative analysis was conducted using different datasets freely available on online machine learning repository, to analyze the performance of state-of-art machine learning algorithms. WEKA data mining toolkit was used to evaluate C4.5, Naïve Bayes, Random Forest, kNN, SVM and Multilayer Perceptron for classification models. Linear regression, Gradient Boosting Machine(GBM), Multilayer Perceptron, kNN, Random Forest and Support Vector Machines (SVM) were applied to dataset fit for regression machine learning. Datasets were trained and analyzed in different experimental setups and a qualitative comparative analysis was performed with k-fold Cross Validation(CV) and paired t-test in Weka experimenter

    On the relevance of preprocessing in predictive maintenance for dynamic systems

    Get PDF
    The complexity involved in the process of real-time data-driven monitoring dynamic systems for predicted maintenance is usually huge. With more or less in-depth any data-driven approach is sensitive to data preprocessing, understood as any data treatment prior to the application of the monitoring model, being sometimes crucial for the final development of the employed monitoring technique. The aim of this work is to quantify the sensitiveness of data-driven predictive maintenance models in dynamic systems in an exhaustive way. We consider a couple of predictive maintenance scenarios, each of them defined by some public available data. For each scenario, we consider its properties and apply several techniques for each of the successive preprocessing steps, e.g. data cleaning, missing values treatment, outlier detection, feature selection, or imbalance compensation. The pretreatment configurations, i.e. sequential combinations of techniques from different preprocessing steps, are considered together with different monitoring approaches, in order to determine the relevance of data preprocessing for predictive maintenance in dynamical systems
    corecore