81,974 research outputs found

    Principal Component Analysis Using Structural Similarity Index for Images

    Full text link
    Despite the advances of deep learning in specific tasks using images, the principled assessment of image fidelity and similarity is still a critical ability to develop. As it has been shown that Mean Squared Error (MSE) is insufficient for this task, other measures have been developed with one of the most effective being Structural Similarity Index (SSIM). Such measures can be used for subspace learning but existing methods in machine learning, such as Principal Component Analysis (PCA), are based on Euclidean distance or MSE and thus cannot properly capture the structural features of images. In this paper, we define an image structure subspace which discriminates different types of image distortions. We propose Image Structural Component Analysis (ISCA) and also kernel ISCA by using SSIM, rather than Euclidean distance, in the formulation of PCA. This paper provides a bridge between image quality assessment and manifold learning opening a broad new area for future research.Comment: Paper for the methods named "Image Structural Component Analysis (ISCA)" and "Kernel Image Structural Component Analysis (Kernel ISCA)

    A Blind Adaptive Color Image Watermarking Scheme Based on Principal Component Analysis, Singular Value Decomposition and Human Visual System

    Get PDF
    A blind adaptive color image watermarking scheme based on principal component analysis, singular value decomposition, and human visual system is proposed. The use of principal component analysis to decorrelate the three color channels of host image, improves the perceptual quality of watermarked image. Whereas, human visual system and fuzzy inference system helped to improve both imperceptibility and robustness by selecting adaptive scaling factor, so that, areas more prone to noise can be added with more information as compared to less prone areas. To achieve security, location of watermark embedding is kept secret and used as key at the time of watermark extraction, whereas, for capacity both singular values and vectors are involved in watermark embedding process. As a result, four contradictory requirements; imperceptibility, robustness, security and capacity are achieved as suggested by results. Both subjective and objective methods are acquired to examine the performance of proposed schemes. For subjective analysis the watermarked images and watermarks extracted from attacked watermarked images are shown. For objective analysis of proposed scheme in terms of imperceptibility, peak signal to noise ratio, structural similarity index, visual information fidelity and normalized color difference are used. Whereas, for objective analysis in terms of robustness, normalized correlation, bit error rate, normalized hamming distance and global authentication rate are used. Security is checked by using different keys to extract the watermark. The proposed schemes are compared with state-of-the-art watermarking techniques and found better performance as suggested by results

    Object recognition using shape-from-shading

    Get PDF
    This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable

    An Independent Component Analysis Based Tool for Exploring Functional Connections in the Brain

    Get PDF
    This thesis describes the use of independent component analysis (ICA) as a measure of voxel similarity, which allows the user to find and view statistically independent maps of correlated voxel activity. The tool developed in this work uses a specialized clustering technique, designed to find and characterize clusters of activated voxels, to compare the independent component spatial maps across patients. This same method is also used to compare SPM results across patients
    corecore