170 research outputs found

    Multimodal analysis for object classification and event detection

    Get PDF

    Pedestrian detection in far infrared images

    Get PDF
    This paper presents an experimental study on pedestrian classification and detection in far infrared (FIR) images. The study includes an in-depth evaluation of several combinations of features and classifiers, which include features previously used for daylight scenarios, as well as a new descriptor (HOPE - Histograms of Oriented Phase Energy), specifically targeted to infrared images, and a new adaptation of a latent variable SVM approach to FIR images. The presented results are validated on a new classification and detection dataset of FIR images collected in outdoor environments from a moving vehicle. The classification space contains 16152 pedestrians and 65440 background samples evenly selected from several sequences acquired at different temperatures and different illumination conditions. The detection dataset consist on 15224 images with ground truth information. The authors are making this dataset public for benchmarking new detectors in the area of intelligent vehicles and field robotics applications.This work was supported by the Spanish Government through the Cicyt projects FEDORA (GRANT TRA2010-20225-C03-01) and Driver Distraction Detector System (GRANT TRA2011-29454- C03- 02), and the Comunidad de Madrid through the project SEGVAUTO (S2009/DPI-1509)

    WEIGH-IN-MOTION DATA-DRIVEN PAVEMENT PERFORMANCE PREDICTION MODELS

    Get PDF
    The effective functioning of pavements as a critical component of the transportation system necessitates the implementation of ongoing maintenance programs to safeguard this significant and valuable infrastructure and guarantee its optimal performance. The maintenance, rehabilitation, and reconstruction (MRR) program of the pavement structure is dependent on a multidimensional decision-making process, which considers the existing pavement structural condition and the anticipated future performance. Pavement Performance Prediction Models (PPPMs) have become indispensable tools for the efficient implementation of the MRR program and the minimization of associated costs by providing precise predictions of distress and roughness based on inventory and monitoring data concerning the pavement structure\u27s state, traffic load, and climatic conditions. The integration of PPPMs has become a vital component of Pavement Management Systems (PMSs), facilitating the optimization, prioritization, scheduling, and selection of maintenance strategies. Researchers have developed several PPPMs with differing objectives, and each PPPM has demonstrated distinct strengths and weaknesses regarding its applicability, implementation process, and data requirements for development. Traditional statistical models, such as linear regression, are inadequate in handling complex nonlinear relationships between variables and often generate less precise results. Machine Learning (ML)-based models have become increasingly popular due to their ability to manage vast amounts of data and identify meaningful relationships between them to generate informative insights for better predictions. To create ML models for pavement performance prediction, it is necessary to gather a significant amount of historical data on pavement and traffic loading conditions. The Long-Term Pavement Performance Program (LTPP) initiated by the Federal Highway Administration (FHWA) offers a comprehensive repository of data on the environment, traffic, inventory, monitoring, maintenance, and rehabilitation works that can be utilized to develop PPPMs. The LTPP also includes Weigh-In-Motion (WIM) data that provides information on traffic, such as truck traffic, total traffic, directional distribution, and the number of different axle types of vehicles. High-quality traffic loading data can play an essential role in improving the performance of PPPMs, as the Mechanistic-Empirical Pavement Design Guide (MEPDG) considers vehicle types and axle load characteristics to be critical inputs for pavement design. The collection of high-quality traffic loading data has been a challenge in developing Pavement Performance Prediction Models (PPPMs). The Weigh-In-Motion (WIM) system, which comprises WIM scales, has emerged as an innovative solution to address this issue. By leveraging computer vision and machine learning techniques, WIM systems can collect accurate data on vehicle type and axle load characteristics, which are critical factors affecting the performance of flexible pavements. Excessive dynamic loading caused by heavy vehicles can result in the early disintegration of the pavement structure. The Long-Term Pavement Performance Program (LTPP) provides an extensive repository of WIM data that can be utilized to develop accurate PPPMs for predicting pavement future behavior and tolerance. The incorporation of comprehensive WIM data collected from LTPP has the potential to significantly improve the accuracy and effectiveness of PPPMs. To develop artificial neural network (ANN) based pavement performance prediction models (PPPMs) for seven distinct performance indicators, including IRI, longitudinal crack, transverse crack, fatigue crack, potholes, polished aggregate, and patch failure, a total of 300 pavement sections with WIM data were selected from the United States of America. Data collection spanned 20 years, from 2001 to 2020, and included information on pavement age, material properties, climatic properties, structural properties, and traffic-related characteristics. The primary dataset was then divided into two distinct subsets: one which included WIMgenerated traffic data and another which excluded WIM-generated traffic data. Data cleaning and normalization were meticulously performed using the Z-score normalization method. Each subset was further divided into two separate groups: the first containing 15 years of data for model training and the latter containing 5 years of data for testing purposes. Principal Component Analysis (PCA) was then employed to reduce the number of input variables for the model. Based on a cumulative Proportion of Variation (PoV) of 96%, 12 input variables were selected. Subsequently, a single hidden layer ANN model with 12 neurons was generated for each performance indicator. The study\u27s results indicate that incorporating Weigh-In-Motion (WIM)-generated traffic loading data can significantly enhance the accuracy and efficacy of pavement performance prediction models (PPPMs). This improvement further supports the suitability of optimized pavement maintenance scheduling with minimal costs, while also ensuring timely repairs to promote acceptable serviceability and structural stability of the pavement. The contributions of this research are twofold: first, it provides an enhanced understanding of the positive impacts that high-quality traffic loading data has on pavement conditions; and second, it explores potential applications of WIM data within the Pavement Management System (PMS)

    Development of Instrumented Bikes: Toward Smart Cycling Infrastructure and Maintenance

    Get PDF
    USDOT Grant 69A3551747109This project is to develop an instrumented bike with a sensor logger, a video device (e.g., GoPro), a mobile app, and a cloud server/website to detect real-time quality of cycling infrastructure systems (bike trails, sidewalks, pedestrian pathways, etc), and immediately share the information with cyclists (road users) and governments/authorities (road managers) such that (1) cyclists (road users) will be aware of upcoming potential hazards prior to cycling and be able to adjust their cycling route accordingly, and (2) governments (road managers) will be able to effectively prioritize their maintenance needs. A computing algorithm using the sliding window method was developed in support of the development of instrumented bike. Based on field cycling test, the sliding window computing algorithm is capable of analyzing vibration patterns and identifying potential hazards (potholes, bumps, uneven surface, cracks, etc.) through multiple cyclists. The purpose of the project is to introduce an instrumented bike to the cycling community and agencies with a goal to provide \u201csmart wheels\u201d for day-to-day cycling operations, improve bike efficiency, safety, and mobility, promote cycling activities, and reduce emissions

    Stochastic Optimization and Machine Learning Modeling for Wireless Networking

    Get PDF
    In the last years, the telecommunications industry has seen an increasing interest in the development of advanced solutions that enable communicating nodes to exchange large amounts of data. Indeed, well-known applications such as VoIP, audio streaming, video on demand, real-time surveillance systems, safety vehicular requirements, and remote computing have increased the demand for the efficient generation, utilization, management and communication of larger and larger data quantities. New transmission technologies have been developed to permit more efficient and faster data exchanges, including multiple input multiple output architectures or software defined networking: as an example, the next generation of mobile communication, known as 5G, is expected to provide data rates of tens of megabits per second for tens of thousands of users and only 1 ms latency. In order to achieve such demanding performance, these systems need to effectively model the considerable level of uncertainty related to fading transmission channels, interference, or the presence of noise in the data. In this thesis, we will present how different approaches can be adopted to model these kinds of scenarios, focusing on wireless networking applications. In particular, the first part of this work will show how stochastic optimization models can be exploited to design energy management policies for wireless sensor networks. Traditionally, transmission policies are designed to reduce the total amount of energy drawn from the batteries of the devices; here, we consider energy harvesting wireless sensor networks, in which each device is able to scavenge energy from the environment and charge its battery with it. In this case, the goal of the optimal transmission policies is to efficiently manage the energy harvested from the environment, avoiding both energy outage (i.e., no residual energy in a battery) and energy overflow (i.e., the impossibility to store scavenged energy when the battery is already full). In the second part of this work, we will explore the adoption of machine learning techniques to tackle a number of common wireless networking problems. These algorithms are able to learn from and make predictions on data, avoiding the need to follow limited static program instructions: models are built from sample inputs, thus allowing for data-driven predictions and decisions. In particular, we will first design an on-the-fly prediction algorithm for the expected time of arrival related to WiFi transmissions. This predictor only exploits those network parameters available at each receiving node and does not require additional knowledge from the transmitter, hence it can be deployed without modifying existing standard transmission protocols. Secondly, we will investigate the usage of particular neural network instances known as autoencoders for the compression of biosignals, such as electrocardiography and photo plethysmographic sequences. A lightweight lossy compressor will be designed, able to be deployed in wearable battery-equipped devices with limited computational power. Thirdly, we will propose a predictor for the long-term channel gain in a wireless network. Differently from other works in the literature, such predictor will only exploit past channel samples, without resorting to additional information such as GPS data. An accurate estimation of this gain would enable to, e.g., efficiently allocate resources and foretell future handover procedures. Finally, although not strictly related to wireless networking scenarios, we will show how deep learning techniques can be applied to the field of autonomous driving. This final section will deal with state-of-the-art machine learning solutions, proving how these techniques are able to considerably overcome the performance given by traditional approaches

    Health State Estimation

    Full text link
    Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.Comment: Ph.D. Dissertation @ University of California, Irvin

    Visual attention and swarm cognition for off-road robots

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2011Esta tese aborda o problema da modelação de atenção visual no contexto de robôs autónomos todo-o-terreno. O objectivo de utilizar mecanismos de atenção visual é o de focar a percepção nos aspectos do ambiente mais relevantes à tarefa do robô. Esta tese mostra que, na detecção de obstáculos e de trilhos, esta capacidade promove robustez e parcimónia computacional. Estas são características chave para a rapidez e eficiência dos robôs todo-o-terreno. Um dos maiores desafios na modelação de atenção visual advém da necessidade de gerir o compromisso velocidade-precisão na presença de variações de contexto ou de tarefa. Esta tese mostra que este compromisso é resolvido se o processo de atenção visual for modelado como um processo auto-organizado, cuja operação é modulada pelo módulo de selecção de acção, responsável pelo controlo do robô. Ao fechar a malha entre o processo de selecção de acção e o de percepção, o último é capaz de operar apenas onde é necessário, antecipando as acções do robô. Para fornecer atenção visual com propriedades auto-organizadas, este trabalho obtém inspiração da Natureza. Concretamente, os mecanismos responsáveis pela capacidade que as formigas guerreiras têm de procurar alimento de forma auto-organizada, são usados como metáfora na resolução da tarefa de procurar, também de forma auto-organizada, obstáculos e trilhos no campo visual do robô. A solução proposta nesta tese é a de colocar vários focos de atenção encoberta a operar como um enxame, através de interacções baseadas em feromona. Este trabalho representa a primeira realização corporizada de cognição de enxame. Este é um novo campo de investigação que procura descobrir os princípios básicos da cognição, inspeccionando as propriedades auto-organizadas da inteligência colectiva exibida pelos insectos sociais. Logo, esta tese contribui para a robótica como disciplina de engenharia e para a robótica como disciplina de modelação, capaz de suportar o estudo do comportamento adaptável.Esta tese aborda o problema da modelação de atenção visual no contexto de robôs autónomos todo-o-terreno. O objectivo de utilizar mecanismos de atenção visual é o de focar a percepção nos aspectos do ambiente mais relevantes à tarefa do robô. Esta tese mostra que, na detecção de obstáculos e de trilhos, esta capacidade promove robustez e parcimónia computacional. Estas são características chave para a rapidez e eficiência dos robôs todo-o-terreno. Um dos maiores desafios na modelação de atenção visual advém da necessidade de gerir o compromisso velocidade-precisão na presença de variações de contexto ou de tarefa. Esta tese mostra que este compromisso é resolvido se o processo de atenção visual for modelado como um processo auto-organizado, cuja operação é modulada pelo módulo de selecção de acção, responsável pelo controlo do robô. Ao fechar a malha entre o processo de selecção de acção e o de percepção, o último é capaz de operar apenas onde é necessário, antecipando as acções do robô. Para fornecer atenção visual com propriedades auto-organizadas, este trabalho obtém inspi- ração da Natureza. Concretamente, os mecanismos responsáveis pela capacidade que as formi- gas guerreiras têm de procurar alimento de forma auto-organizada, são usados como metáfora na resolução da tarefa de procurar, também de forma auto-organizada, obstáculos e trilhos no campo visual do robô. A solução proposta nesta tese é a de colocar vários focos de atenção encoberta a operar como um enxame, através de interacções baseadas em feromona. Este trabalho representa a primeira realização corporizada de cognição de enxame. Este é um novo campo de investigação que procura descobrir os princípios básicos da cognição, ins- peccionando as propriedades auto-organizadas da inteligência colectiva exibida pelos insectos sociais. Logo, esta tese contribui para a robótica como disciplina de engenharia e para a robótica como disciplina de modelação, capaz de suportar o estudo do comportamento adaptável.Fundação para a Ciência e a Tecnologia (FCT,SFRH/BD/27305/2006); Laboratory of Agent Modelling (LabMag

    On Compositional Hierarchical Models for holistic Lane and Road Perception in Intelligent Vehicles

    Get PDF
    This work is a contribution to the vision based perception of multi lane roads of urban intersections. Given multiple input features the proposed probabilistic hierarchical model infers the lane structure as well as the location of stoplines and the turn directions of individual lanes. Thereby, it expresses prior expectations on the road topology using weak probabilistic constraints which allows for the detection of parallel lanes as well as splitting and merging lanes

    Visual Impact Assessment of Human Interventions on the Landscape: The case of Wind Farms and Solar Power Plants

    Full text link
    El incremento de intervenciones humanas sobre el paisaje ha dado paso a una creciente preocupación social por la degradación del mismo y cada vez más, su mantenimiento comienza a plantearse en nuestra sociedad como una prioridad. En las últimas décadas, la investigación sobre el paisaje ha crecido de manera exponencial, impulsada por la necesidad de cumplir con mandatos legales. A pesar de ello, todavía no existe una herramienta universal para la evaluación del impacto visual que pueda ser utilizada por diferentes tipos de usuarios dentro del ámbito de la investigación y la planificación paisajística. Por otra parte, las herramientas desarrolladas son a menudo demasiado complicadas o demasiado específicas para ser útiles en la práctica. El objetivo de este trabajo es por lo tanto, desarrollar herramientas fiables y de fácil aplicación para cuantificar el impacto visual de las intervenciones humanas en el paisaje, por medio de una metodología potencialmente generalizable. Se presta especial atención a los parques eólicos y a las huertas solares. Se presentan tres casos de estudio. Cada investigación tiene como objetivo avanzar desde los resultados de la anterior, como complemento de la metodología, con nuevas herramientas. En el primer estudio, se desarrolla un indicador para medir la magnitud objetiva del impacto visual de los parques eólicos. El indicador combina medidas tangibles de visibilidad, color, fractalidad y continuidad que se puede tomar a partir de fotografías. Se construyen funciones de valor para cada variable y se incorporan al indicador. Este indicador se utilizó para calcular el impacto estético de cinco parques eólicos reales. La comparación estadística de los resultados del indicador con los obtenidos por consulta a una muestra de individuos, muestra que el indicador representa correctamente el orden de impacto según la percepción de la muestra de la población, por lo que es una medida objetiva y adecuada de los efectos visuales de los parquesTorres Sibille, ADC. (2010). Visual Impact Assessment of Human Interventions on the Landscape: The case of Wind Farms and Solar Power Plants [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/9147Palanci
    corecore