29 research outputs found

    Cryptanalyse quantique de primitives symétriques

    Get PDF
    National audienceEtude du crible de Kuperberg et de l'utilisation d'un oracle probabiliste pour l'algorithme de Grover

    Méthodes pour la vérification des protocoles cryptographiques dans le modèle calculatoire

    Get PDF
    Critical and private information are exchanged on public environment. To protect it from dishonest users, we use cryptographic tools. Unfortunately, bad conception, poorly written security properties and required security hypothesis lead to attacks, and it may take years before one discover the attack and fix the security schemes involved. In this context, provable security provides formal definitions for security objectives and implied mathematical proofs that these objectives are fullfilled. On another hand, complexity and variety of cryptographic systems are increasing, and proofs by hand are too complicated to write and to verify (Bellare& Rogaway 2004, Shoup 2004, Halevi 2005). Thus, we need computer-assisted verification methods for cryptographic systems. The aim of this thesis is to progress in this direction. More precisely we want significant progress over formal proofs on cryptographic protocols. To verify cryptographic protocols we need to develop a theoritical framework providing: - a precise modelisation for cryptographic protocols and security properties we want to prove in the computationnal model, - designing tactics to automate proofs, - taking into account realistic models for adversary (side-channels...). By the end of the thesis we have enhanced a theoretical framework and computing tools helping verifying cryptographic protocols.Les échanges des informations confidentielles ou critiques dans un environnement public, et donc potentiellement hostile, nécessitent l'emploi de techniques cryptographiques (protocoles et primitives). Malheureusement, l'expérience montre qu'une mauvaise conception, ou une expression peu claire des propriétés et hypothèses de sécurité attendues conduisent à des attaques, et qu'il faut parfois des années avant que celles-ci soient découvertes et corrigées. D'où l'adoption croissante de la sécurité prouvable, où on donne une définition rigoureuse des objectifs de sécurité et des démonstrations mathématiques que ceux-ci sont remplis. Par ailleurs, la complexité et la diversité des systèmes cryptographiques croît également. Il est donc largement admis qu'il n'est plus viable d'écrire ou vérifier manuellement des démonstrations cryptographiques (Bellare& Rogaway 2004, Shoup 2004, Halevi 2005) et qu'il faut développer des méthodes de vérification des systèmes cryptographiques assistées par ordinateur. L'objectif de cette thèse est d'effectuer des progrès significatifs dans cette direction. Plus précisement on s'interesse à la preuve formelle de protocoles cryptographiques. Vérifier des protocoles cryptographiques requiert le développement d'un cadre théorique qui doit permettre: - une modélisation précise des protocoles cryptographiques et des propriétés de sécurité qu'on veut prouver dans le modèle calculatoire. - mise en place de stratégies d'automatisation de preuves. - prise en compte des modèles plus réalistes pour l'adversaire (canaux cachés, ressources de calcul). A la fin de la thèse on a obtenu un cadre formel et un ensemble de méthodes logicielles capable d'aider à la vérification des protocoles cryptographiques

    Recherche de collisions et cryptanalyse symétrique quantique

    Get PDF
    National audienceDepuis la découverte décisive de l'algorithme de Shor ([Sho94]), le monde de la cryptographie s'est intéressé de près aux capacités d'un éventuel ordinateur quantique, dont l'émergence mettrait à bas la plupart des primitives asymétriques utilisées aujourd'hui. La situation en cryptographie symétrique est plus ambiguë : la croyance générale veut qu'un doublement de la taille des clés suffise à protéger les systèmes actuels. En effet, l'algorithme de Grover ([Gro96]) promet une accélération quadratique de tout type de recherche exhaustive. Cependant, de récents travaux ont appelé à discuter de cette affirmation péremptoire ([Kap+16a]). Mon stage s'inscrit dans la continuité de ces travaux

    Modélisation et vérification de protocoles pour des communications sécurisées de groupes

    Get PDF
    Dans le monde des systèmes qui utilisent des communications sous forme de diffusion de groupes, le critère de sécurité devient un facteur de plus en plus important. Le choix des mécanismes pour la protection de cette communication, mécanismes basés sur des échanges de clés symétriques et asymétriques, influe sur l'efficacité du système. Nous avons procédé à l'analyse des besoins et nous avons défini un modèle qui permet de représenter la dynamique des groupes et la communication entre leurs membres. Nous avons défini l'architecture d'un système dont l'élément central est la fonction de création, d'échange et de mise en place correcte des clés. La modélisation de ce système dans un environnement UML 2.0 a permis son analyse en termes de garantie de propriétés temporelles et de sécurité. L'approche suivie pour l'étude des exigences temporelles est généralisable à de nombreux systèmes distribués. La valorisation de nos études a été faite dans le cadre du projet national RNRT SAFECAST. ABSTRACT : Systems that implement communications in the form of group multicast have increasingly raised security problems. The protection mechanisms applied to that communication rely on symmetrical and asymmetrical key exchanges, and the way these mechanisms are selected does influence the system's efficiency. Following an in depth analysis of the needs captured by these systems, we defined a model for representing the dynamics of groups, as well as communication among group members. We defined one system architecture which focuses on key creation, exchange and management functions. The system was modeled in UML 2.0 and checked against security and temporal properties. The approach we followed to investigate temporal requirements may be extended to a broad variety of distributed system

    Protocoles cryptographiques avec des participants limités en espace mémoire

    Full text link
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    Sécurisation par dynamiques chaotiques des réseaux locaux sans fil au niveau de la couche MAC

    Get PDF
    The security of wireless sensor network is a growing field of research hampered by limited battery life time and computing constraints. The originality of this thesis is to provide Low Power chaotic cryptosystems for sensor networks more suitable than conventional algorithms and achieve an implementation on a real platform.. We present first a state of the art of wireless networks, threats and constraints of the security process as well as conventional cryptographic techniques. We give an overview of the chaos theory and we validate the randomness of several chaotic maps by the NIST statistical tests. Then, we propose new methods of chaotic S-Box construction, while demonstrating their robustness against traditional attacks. Finally, we propose a new image encryption algorithm dedicated to wireless sensor network. Validation of our contributions is performed by simulation and experimental measurements on a platform of real sensor networks (SensLab).Les travaux de recherche de cette thèse s’inscrivent dans le cadre de la sécurité par chaos des réseaux locaux sans fil, en particulier les réseaux de capteurs sans fil. L’originalité de cette thèse consiste à proposer des cryptosystèmes à base de chaos plus adaptés aux réseaux de capteurs, en termes de consommation d’énergie, que les algorithmes conventionnels et à réaliser une implémentation sur une plateforme réelle. Nous présentons en premier lieu un état de l’art des réseaux, les menaces, les contraintes limitant le processus de sécurité des informations ainsi que les principales techniques de cryptographie. Nous donnons un aperçu sur la théorie de chaos et nous validons l’aspect aléatoire de plusieurs suites chaotiques par les tests statistiques du NIST. Nous proposons ensuite des nouvelles méthodes de construction de S-Box chaotiques tout en prouvant leur robustesse contre les attaques traditionnelles. Nous proposons enfin un nouvel algorithme de cryptage d’image dédié au réseau de capteurs sans fil. La validation de nos contributions est effectuée par simulation et par des mesures expérimentales sur une plateforme de réseaux de capteurs réels (SensLab)

    Optimisation de la méthode de rejet de la signature Wave

    Get PDF
    National audienceLe contexte général La cryptographie dite asymétrique ou à clef publique permet de mettre en place des algorithmes de chiffrement et de signature. Elle est toujours basée sur un problème difficile. Aujourd'hui, les algorithmes de chiffrement et de signature sont essentiellement basés sur le problème du logarithme discret et sur la factorisation de grands nombres. Cependant, la sécurité de ces algorithmes est menacée par l'ordinateur quantique. L'idée d'un ordinateur quantique est apparue dans les années 70-80 et de premiers prototypes ont été proposé dans les années 1990. En 1994, Shor trouve un nouvel algorithme (l'algorithme de Shor). C'est un algorithme quantique (donc exécutable par un ordinateur quantique) qui permet de factoriser des grands nombres en un temps polynomial en la taille des entrées. Il y a donc mise en danger de la sécurité de nombreux algorithmes cryptographiques actuels, ceci d'autant plus que la recherche n'a cessé de progresser depuis pour fabriquer des ordinateurs quantiques de taille raisonnable. Certes, ceux dont on dispose actuellement sont encore trop petits pour pouvoir menacer les chiffrements actuels, mais de nouvelles avancées sont annoncées régulièrement, par exemple par Google[AAB + 19] en septembre dernier. De nombreuses entreprises comme IBM ou Google, mais aussi les États-Unis ou la Chine investissent dans l'ordinateur quantique. Il y a donc nécessité de renouveler les algorithmes cryptographiques à clef publique. Déjà pour être en mesure de chiffrer et signer les messages futurs le jour où l'ordinateur quantique tiendra ses promesses, mais aussi pour assurer que certains messages actuels puissent rester indéchiffrables pour les 50 prochaines années. C'est dans cette optique que l'agence américaine des standards National Institute of Standards and Technology (NIST) a lancé en décembre 2016 un processus international en vue de standardiser des primitives de chiffrement et de signature électronique 1. La cryptographie ayant pour but de résister à l'ordinateur quantique s'appelle la cryptographie post-quantique. Les outils mathématiques étudiés pour mettre ne place ces nouveaux algorithmes sont principalement les réseaux euclidiens et les codes correcteurs d'erreur, mais aussi les fonctions de hachage, les polynômes multi-variés ou les isogénies. Ce stage porte sur la cryptographie basée sur les codes correcteurs d'erreur. Le premier à avoir eu l'idée d'utiliser cet outil est McEliece en 1978[McE78]. Il se basait sur la difficulté pour décoder un code linéaire quelconque. Il y a depuis eu de nombreux schémas de chiffrement basés sur les codes, cependant aucune signature à base de code efficace n'a pu être trouvée. Mais en décembre 2019 a été proposée la signature Wave[DST19], une nouvelle signature cryptographique basée sur les codes. Je l'ai étudiée et tenté d'améliorer sa mise en oeuvre pendant mon stage

    Vers une arithmétique efficace pour le chiffrement homomorphe basé sur le Ring-LWE

    Get PDF
    Fully homomorphic encryption is a kind of encryption offering the ability to manipulate encrypted data directly through their ciphertexts. In this way it is possible to process sensitive data without having to decrypt them beforehand, ensuring therefore the datas' confidentiality. At the numeric and cloud computing era this kind of encryption has the potential to considerably enhance privacy protection. However, because of its recent discovery by Gentry in 2009, we do not have enough hindsight about it yet. Therefore several uncertainties remain, in particular concerning its security and efficiency in practice, and should be clarified before an eventual widespread use. This thesis deals with this issue and focus on performance enhancement of this kind of encryption in practice. In this perspective we have been interested in the optimization of the arithmetic used by these schemes, either the arithmetic underlying the Ring Learning With Errors problem on which the security of these schemes is based on, or the arithmetic specific to the computations required by the procedures of some of these schemes. We have also considered the optimization of the computations required by some specific applications of homomorphic encryption, and in particular for the classification of private data, and we propose methods and innovative technics in order to perform these computations efficiently. We illustrate the efficiency of our different methods through different software implementations and comparisons to the related art.Le chiffrement totalement homomorphe est un type de chiffrement qui permet de manipuler directement des données chiffrées. De cette manière, il est possible de traiter des données sensibles sans avoir à les déchiffrer au préalable, permettant ainsi de préserver la confidentialité des données traitées. À l'époque du numérique à outrance et du "cloud computing" ce genre de chiffrement a le potentiel pour impacter considérablement la protection de la vie privée. Cependant, du fait de sa découverte récente par Gentry en 2009, nous manquons encore de recul à son propos. C'est pourquoi de nombreuses incertitudes demeurent, notamment concernant sa sécurité et son efficacité en pratique, et devront être éclaircies avant une éventuelle utilisation à large échelle.Cette thèse s'inscrit dans cette problématique et se concentre sur l'amélioration des performances de ce genre de chiffrement en pratique. Pour cela nous nous sommes intéressés à l'optimisation de l'arithmétique utilisée par ces schémas, qu'elle soit sous-jacente au problème du "Ring-Learning With Errors" sur lequel la sécurité des schémas considérés est basée, ou bien spécifique aux procédures de calculs requises par certains de ces schémas. Nous considérons également l'optimisation des calculs nécessaires à certaines applications possibles du chiffrement homomorphe, et en particulier la classification de données privées, de sorte à proposer des techniques de calculs innovantes ainsi que des méthodes pour effectuer ces calculs de manière efficace. L'efficacité de nos différentes méthodes est illustrée à travers des implémentations logicielles et des comparaisons aux techniques de l'état de l'art
    corecore