39,405 research outputs found

    AlphaPilot: Autonomous Drone Racing

    Full text link
    This paper presents a novel system for autonomous, vision-based drone racing combining learned data abstraction, nonlinear filtering, and time-optimal trajectory planning. The system has successfully been deployed at the first autonomous drone racing world championship: the 2019 AlphaPilot Challenge. Contrary to traditional drone racing systems, which only detect the next gate, our approach makes use of any visible gate and takes advantage of multiple, simultaneous gate detections to compensate for drift in the state estimate and build a global map of the gates. The global map and drift-compensated state estimate allow the drone to navigate through the race course even when the gates are not immediately visible and further enable to plan a near time-optimal path through the race course in real time based on approximate drone dynamics. The proposed system has been demonstrated to successfully guide the drone through tight race courses reaching speeds up to 8m/s and ranked second at the 2019 AlphaPilot Challenge.Comment: Accepted at Robotics: Science and Systems 2020, associated video at https://youtu.be/DGjwm5PZQT

    Ongoing Emergence: A Core Concept in Epigenetic Robotics

    Get PDF
    We propose ongoing emergence as a core concept in epigenetic robotics. Ongoing emergence refers to the continuous development and integration of new skills and is exhibited when six criteria are satisfied: (1) continuous skill acquisition, (2) incorporation of new skills with existing skills, (3) autonomous development of values and goals, (4) bootstrapping of initial skills, (5) stability of skills, and (6) reproducibility. In this paper we: (a) provide a conceptual synthesis of ongoing emergence based on previous theorizing, (b) review current research in epigenetic robotics in light of ongoing emergence, (c) provide prototypical examples of ongoing emergence from infant development, and (d) outline computational issues relevant to creating robots exhibiting ongoing emergence

    Towards an Indexical Model of Situated Language Comprehension for Cognitive Agents in Physical Worlds

    Full text link
    We propose a computational model of situated language comprehension based on the Indexical Hypothesis that generates meaning representations by translating amodal linguistic symbols to modal representations of beliefs, knowledge, and experience external to the linguistic system. This Indexical Model incorporates multiple information sources, including perceptions, domain knowledge, and short-term and long-term experiences during comprehension. We show that exploiting diverse information sources can alleviate ambiguities that arise from contextual use of underspecific referring expressions and unexpressed argument alternations of verbs. The model is being used to support linguistic interactions in Rosie, an agent implemented in Soar that learns from instruction.Comment: Advances in Cognitive Systems 3 (2014

    Rethinking the ontogeny of mindreading

    Get PDF
    We propose a mentalistic and nativist view of human early mental and social life and of the ontogeny of mindreading. We define the mental state of sharedness as the primitive, one-sided capability to take one's own mental states as mutually known to an i nteractant. We argue that this capability is an innate feature of the human mind, which the child uses to make a subjective sense of the world and of her actions. We argue that the child takes all of her mental states as shared with her caregivers. This a llows her to interact with her caregivers in a mentalistic way from the very beginning and provides the grounds on which the later maturation of mindreading will build. As the latter process occurs, the child begins to understand the mental world in terms of differences between the mental states of different agents; subjectively, this also corresponds to the birth of privateness.

    3D audio as an information-environment: manipulating perceptual significance for differntiation and pre-selection

    Get PDF
    Contemporary use of sound as artificial information display is rudimentary, with little 'depth of significance' to facilitate users' selective attention. We believe that this is due to conceptual neglect of 'context' or perceptual background information. This paper describes a systematic approach to developing 3D audio information environments that utilise known cognitive characteristics, in order to promote rapidity and ease of use. The key concepts are perceptual space, perceptual significance, ambience labelling information and cartoonification
    • …
    corecore