1,332 research outputs found

    Performance Analysis of Cognitive Radio Systems with Imperfect Channel Knowledge

    Get PDF
    An analytical framework is established to characterize the effects such as time allocation and variation, arising due to the incorporation of imperfect channel knowledge, that are detrimental to the performance of the cognitive radio systems. In order to facilitate hardware deployment of a cognitive radio system, received power-based estimation, a novel channel estimation technique is employed for the channels existing between the primary and the secondary systems, thus fulfilling low-complexity and versatility requirements

    The Achievable Rate of Interweave Cognitive Radio in the Face of Sensing Errors

    Get PDF
    Cognitive radio (CR) systems are potentially capable of mitigating the spectrum shortage of contemporary wireless systems. In this paper, we provide a brief overview of CR systems and the important research milestones of their evolution, along with their standardization activities, as a result of their research. This is followed by the detailed analysis of the interweave policy-based CR network (CRN) and by a detailed comparison with the family of underlay-based CRNs. In the interweave-based CRN, sensing of the primary user's (PU) spectrum by the secondary user's (SU) has remained a challenge, because the sensing errors prevent us from fulfilling the significant throughput gains that the concept of CR promises. Since missed detection and false alarm errors in real-time spectrum sensing cannot be avoided, based on a new approach, we quantify the achievable rates of the interweave CR by explicitly incorporating the effect of sensing errors. The link between the PU transmitter and the SU transmitter is assumed to be fast fading. Explicitly, the achievable rate degradation imposed by the sensing errors is analyzed for two spectrum sensing techniques, namely, for energy detection and for magnitude squared coherence-based detection. It is demonstrated that when the channel is sparsely occupied by the PU, the reusing techniques that are capable of simultaneously providing low missed detection and false alarm probabilities cause only a minor degradation to the achievable rates. Furthermore, based on the achievable rates derived for underlay CRNs, we compare the interweave CR and the underlay CR paradigms from the perspective of their resilience against spectrum sensing errors. Interestingly, in many practical regimes, the interweave CR paradigm outperforms the underlay CR paradigm in the presence of sensing errors, especially when the SNR at the SU is below 10 dB and when the SNR at the PU is in the range of 10-40 dB. Furthermore, we also provide rules of thumb that identify regimes, where the interweave CR outperforms the underlay CR

    Vehicular Dynamic Spectrum Access: Using Cognitive Radio for Automobile Networks

    Get PDF
    Vehicular Dynamic Spectrum Access (VDSA) combines the advantages of dynamic spectrum access to achieve higher spectrum efficiency and the special mobility pattern of vehicle fleets. This dissertation presents several noval contributions with respect to vehicular communications, especially vehicle-to-vehicle communications. Starting from a system engineering aspect, this dissertation will present several promising future directions for vehicle communications, taking into consideration both the theoretical and practical aspects of wireless communication deployment. This dissertation starts with presenting a feasibility analysis using queueing theory to model and estimate the performance of VDSA within a TV whitespace environment. The analytical tool uses spectrum measurement data and vehicle density to find upper bounds of several performance metrics for a VDSA scenario in TVWS. Then, a framework for optimizing VDSA via artificial intelligence and learning, as well as simulation testbeds that reflect realistic spectrum sharing scenarios between vehicle networks and heterogeneous wireless networks including wireless local area networks and wireless regional area networks. Detailed experimental results justify the testbed for emulating a mobile dynamic spectrum access environment composed of heterogeneous networks with four dimensional mutual interference. Vehicular cooperative communication is the other proposed technique that combines the cooperative communication technology and vehicle platooning, an emerging concept that is expected to both increase highway utilization and enhance both driver experience and safety. This dissertation will focus on the coexistence of multiple vehicle groups in shared spectrum, where intra-group cooperation and inter-group competition are investigated in the aspect of channel access. Finally, a testbed implementation VDSA is presented and a few applications are developed within a VDSA environment, demonstrating the feasibility and benefits of some features in a future transportation system
    corecore