404 research outputs found

    Climate Dynamics: A Network-Based Approach for the Analysis of Global Precipitation

    Get PDF
    Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010). The precipitation network is built associating a node to a geographical region, which has a temporal distribution of precipitation, and identifying possible links among nodes through the correlation function. The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events such as monsoons, tropical cyclones and heat waves, which can all contribute to reduce the correlation to the short-range scale only. Some patterns emerging between mid-latitude and tropical regions suggest a possible impact of the propagation of planetary waves on precipitation at a global scale. Other links can be qualitatively associated to the atmospheric and oceanic circulation. To analyze the sensitivity of the network to the physical closeness of the nodes, short-term connections are broken. The African Sahel, Eastern Australia and Northern Europe regions again appear as the supernodes of the network, confirming furthermore their long-range connection structure. Almost all North-American and Asian nodes vanish, revealing that extreme events can enhance high precipitation gradients, leading to a systematic absence of long-range patterns

    Topological Strata of Weighted Complex Networks

    Get PDF
    The statistical mechanical approach to complex networks is the dominant paradigm in describing natural and societal complex systems. The study of network properties, and their implications on dynamical processes, mostly focus on locally defined quantities of nodes and edges, such as node degrees, edge weights and --more recently-- correlations between neighboring nodes. However, statistical methods quickly become cumbersome when dealing with many-body properties and do not capture the precise mesoscopic structure of complex networks. Here we introduce a novel method, based on persistent homology, to detect particular non-local structures, akin to weighted holes within the link-weight network fabric, which are invisible to existing methods. Their properties divide weighted networks in two broad classes: one is characterized by small hierarchically nested holes, while the second displays larger and longer living inhomogeneities. These classes cannot be reduced to known local or quasilocal network properties, because of the intrinsic non-locality of homological properties, and thus yield a new classification built on high order coordination patterns. Our results show that topology can provide novel insights relevant for many-body interactions in social and spatial networks. Moreover, this new method creates the first bridge between network theory and algebraic topology, which will allow to import the toolset of algebraic methods to complex systems.Comment: 26 pages, 19 figures, 1 tabl

    Characterizing and Detecting Unrevealed Elements of Network Systems

    Get PDF
    This dissertation addresses the problem of discovering and characterizing unknown elements in network systems. Klir (1985) provides a general definition of a system as “... a set of some things and a relation among the things (p. 4). A system, where the `things\u27, i.e. nodes, are related through links is a network system (Klir, 1985). The nodes can represent a range of entities such as machines or people (Pearl, 2001; Wasserman & Faust, 1994). Likewise, links can represent abstract relationships such as causal influence or more visible ties such as roads (Pearl, 1988, pp. 50-51; Wasserman & Faust, 1994; Winston, 1994, p. 394). It is not uncommon to have incomplete knowledge of network systems due to either passive circumstances, e.g. limited resources to observe a network, active circumstances, e.g. intentional acts of concealment, or some combination of active and passive influences (McCormick & Owen, 2000, p. 175; National Research Council, 2005, pp. 7, 11). This research provides statistical and graph theoretic approaches for such situations, including those in which nodes are causally related (Geiger & Pearl, 1990, pp. 3, 10; Glymour, Scheines, Spirtes, & Kelly, 1987, pp. 75-86, 178183; Murphy, 1998; Verma & Pearl, 1991, pp. 257, 260, 264-265). A related aspect of this research is accuracy assessment. It is possible an analyst could fail to detect a network element, or be aware of network elements, but incorrectly conclude the associated network system structure (Borgatti, Carley, & Krackhardt, 2006). The possibilities require assessment of the accuracy of the observed and conjectured network systems, and this research provides a means to do so (Cavallo & Klir, 1979, p. 143; Kelly, 1957, p. 968)

    Organization of Physical Interactomes as Uncovered by Network Schemas

    Get PDF
    Large-scale protein-protein interaction networks provide new opportunities for understanding cellular organization and functioning. We introduce network schemas to elucidate shared mechanisms within interactomes. Network schemas specify descriptions of proteins and the topology of interactions among them. We develop algorithms for systematically uncovering recurring, over-represented schemas in physical interaction networks. We apply our methods to the S. cerevisiae interactome, focusing on schemas consisting of proteins described via sequence motifs and molecular function annotations and interacting with one another in one of four basic network topologies. We identify hundreds of recurring and over-represented network schemas of various complexity, and demonstrate via graph-theoretic representations how more complex schemas are organized in terms of their lower-order constituents. The uncovered schemas span a wide range of cellular activities, with many signaling and transport related higher-order schemas. We establish the functional importance of the schemas by showing that they correspond to functionally cohesive sets of proteins, are enriched in the frequency with which they have instances in the H. sapiens interactome, and are useful for predicting protein function. Our findings suggest that network schemas are a powerful paradigm for organizing, interrogating, and annotating cellular networks

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Structural textile pattern recognition and processing based on hypergraphs

    Full text link
    The humanities, like many other areas of society, are currently undergoing major changes in the wake of digital transformation. However, in order to make collection of digitised material in this area easily accessible, we often still lack adequate search functionality. For instance, digital archives for textiles offer keyword search, which is fairly well understood, and arrange their content following a certain taxonomy, but search functionality at the level of thread structure is still missing. To facilitate the clustering and search, we introduce an approach for recognising similar weaving patterns based on their structures for textile archives. We first represent textile structures using hypergraphs and extract multisets of k-neighbourhoods describing weaving patterns from these graphs. Then, the resulting multisets are clustered using various distance measures and various clustering algorithms (K-Means for simplicity and hierarchical agglomerative algorithms for precision). We evaluate the different variants of our approach experimentally, showing that this can be implemented efficiently (meaning it has linear complexity), and demonstrate its quality to query and cluster datasets containing large textile samples. As, to the best of our knowledge, this is the first practical approach for explicitly modelling complex and irregular weaving patterns usable for retrieval, we aim at establishing a solid baseline

    Informacijos saugos reikalavimų harmonizavimo, analizės ir įvertinimo automatizavimas

    Get PDF
    The growing use of Information Technology (IT) in daily operations of enterprises requires an ever-increasing level of protection over organization’s assets and information from unauthorised access, data leakage or any other type of information security breach. Because of that, it becomes vital to ensure the necessary level of protection. One of the best ways to achieve this goal is to implement controls defined in Information security documents. The problems faced by different organizations are related to the fact that often, organizations are required to be aligned with multiple Information security documents and their requirements. Currently, the organization’s assets and information protection are based on Information security specialist’s knowledge, skills and experience. Lack of automated tools for multiple Information security documents and their requirements harmonization, analysis and visualization lead to the situation when Information security is implemented by organizations in ineffective ways, causing controls duplication or increased cost of security implementation. An automated approach for Information security documents analysis, mapping and visualization would contribute to solving this issue. The dissertation consists of an introduction, three main chapters and general conclusions. The first chapter introduces existing Information security regulatory documents, current harmonization techniques, information security implementation cost evaluation methods and ways to analyse Information security requirements by applying graph theory optimisation algorithms (Vertex cover and Graph isomorphism). The second chapter proposes ways to evaluate information security implementation and costs through a controls-based approach. The effectiveness of this method could be improved by implementing automated initial data gathering from Business processes diagrams. In the third chapter, adaptive mapping on the basis of Security ontology is introduced for harmonization of different security documents; such an approach also allows to apply visualization techniques for harmonization results presentation. Graph optimization algorithms (vertex cover algorithm and graph isomorphism algorithm) for Minimum Security Baseline identification and verification of achieved results against controls implemented in small and medium-sized enterprises were proposed. It was concluded that the proposed methods provide sufficient data for adjustment and verification of security controls applicable by multiple Information security documents.Dissertatio
    corecore