4,867 research outputs found

    Barrier subgradient method

    Get PDF
    In this paper we develop a new primal-dual subgradient method for nonsmooth convex optimization problems. This scheme is based on a self-concordant barrier for the basic feasible set. It is suitable for finding approximate solutions with certain relative accuracy. We discuss some applications of this technique including fractional covering problem, maximal concurrent flow problem, semidefinite relaxations and nonlinear online optimization.convex optimization, subgradient methods, non-smooth optimization, minimax problems, saddle points, variational inequalities, stochastic optimization, black-box methods, lower complexity bounds.

    Some Primal-Dual Theory for Subgradient Methods for Strongly Convex Optimization

    Full text link
    We consider (stochastic) subgradient methods for strongly convex but potentially nonsmooth non-Lipschitz optimization. We provide new equivalent dual descriptions (in the style of dual averaging) for the classic subgradient method, the proximal subgradient method, and the switching subgradient method. These equivalences enable O(1/T)O(1/T) convergence guarantees in terms of both their classic primal gap and a not previously analyzed dual gap for strongly convex optimization. Consequently, our theory provides these classic methods with simple, optimal stopping criteria and optimality certificates at no added computational cost. Our results apply under nearly any stepsize selection and for a range of non-Lipschitz ill-conditioned problems where the early iterations of the subgradient method may diverge exponentially quickly (a phenomenon which, to the best of our knowledge, no prior works address). Even in the presence of such undesirable behaviors, our theory still ensures and bounds eventual convergence.Comment: 29 page

    An Efficient Primal-Dual Prox Method for Non-Smooth Optimization

    Full text link
    We study the non-smooth optimization problems in machine learning, where both the loss function and the regularizer are non-smooth functions. Previous studies on efficient empirical loss minimization assume either a smooth loss function or a strongly convex regularizer, making them unsuitable for non-smooth optimization. We develop a simple yet efficient method for a family of non-smooth optimization problems where the dual form of the loss function is bilinear in primal and dual variables. We cast a non-smooth optimization problem into a minimax optimization problem, and develop a primal dual prox method that solves the minimax optimization problem at a rate of O(1/T)O(1/T) {assuming that the proximal step can be efficiently solved}, significantly faster than a standard subgradient descent method that has an O(1/T)O(1/\sqrt{T}) convergence rate. Our empirical study verifies the efficiency of the proposed method for various non-smooth optimization problems that arise ubiquitously in machine learning by comparing it to the state-of-the-art first order methods

    A duality-based approach for distributed min-max optimization with application to demand side management

    Full text link
    In this paper we consider a distributed optimization scenario in which a set of processors aims at minimizing the maximum of a collection of "separable convex functions" subject to local constraints. This set-up is motivated by peak-demand minimization problems in smart grids. Here, the goal is to minimize the peak value over a finite horizon with: (i) the demand at each time instant being the sum of contributions from different devices, and (ii) the local states at different time instants being coupled through local dynamics. The min-max structure and the double coupling (through the devices and over the time horizon) makes this problem challenging in a distributed set-up (e.g., well-known distributed dual decomposition approaches cannot be applied). We propose a distributed algorithm based on the combination of duality methods and properties from min-max optimization. Specifically, we derive a series of equivalent problems by introducing ad-hoc slack variables and by going back and forth from primal and dual formulations. On the resulting problem we apply a dual subgradient method, which turns out to be a distributed algorithm. We prove the correctness of the proposed algorithm and show its effectiveness via numerical computations.Comment: arXiv admin note: substantial text overlap with arXiv:1611.0916

    Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization

    Get PDF
    Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes
    • …
    corecore