174 research outputs found

    Approximation Complexity of Optimization Problems : Structural Foundations and Steiner Tree Problems

    Get PDF
    In this thesis we study the approximation complexity of the Steiner Tree Problem and related problems as well as foundations in structural complexity theory. The Steiner Tree Problem is one of the most fundamental problems in combinatorial optimization. It asks for a shortest connection of a given set of points in an edge-weighted graph. This problem and its numerous variants have applications ranging from electrical engineering, VLSI design and transportation networks to internet routing. It is closely connected to the famous Traveling Salesman Problem and serves as a benchmark problem for approximation algorithms. We give a survey on the Steiner tree Problem, obtaining lower bounds for approximability of the (1,2)-Steiner Tree Problem by combining hardness results of Berman and Karpinski with reduction methods of Bern and Plassmann. We present approximation algorithms for the Steiner Forest Problem in graphs and bounded hypergraphs, the Prize Collecting Steiner Tree Problem and related problems where prizes are given for pairs of terminals. These results are based on the Primal-Dual method and the Local Ratio framework of Bar-Yehuda. We study the Steiner Network Problem and obtain combinatorial approximation algorithms with reasonable running time for two special cases, namely the Uniform Uncapacitated Case and the Prize Collecting Uniform Uncapacitated Case. For the general case, Jain's algorithms obtains an approximation ratio of 2, based on the Ellipsoid Method. We obtain polynomial time approximation schemes for the Dense Prize Collecting Steiner Tree Problem, Dense k-Steiner Problem and the Dense Class Steiner Tree Problem based on the methods of Karpinski and Zelikovsky for approximating the Dense Steiner Tree Problem. Motivated by the question which parameters make the Steiner Tree problem hard to solve, we make an excurs into Fixed Parameter Complexity, focussing on structural aspects of the W-Hierarchy. We prove a Speedup Theorem for the classes FPT and SP and versions if Levin's Lower Bound Theorem for the class SP as well as for Randomized Space Complexity. Starting from the approximation schemes for the dense Steiner Tree problems, we deal with the efficiency of polynomial time approximation schemes in general. We separate the class EPTAS from PTAS under some reasonable complexity theoretic assumption. The same separation was achieved by Cesaty and Trevisan under some assumtion from Fixed Parameter Complexity. We construct an oracle under which our assumtion holds but that of Cesati and Trevisan does not, which implies that using relativizing proof techniques one cannot show that our assumption implies theirs

    Approximating k-Forest with Resource Augmentation: A Primal-Dual Approach

    Full text link
    In this paper, we study the kk-forest problem in the model of resource augmentation. In the kk-forest problem, given an edge-weighted graph G(V,E)G(V,E), a parameter kk, and a set of mm demand pairs V×V\subseteq V \times V, the objective is to construct a minimum-cost subgraph that connects at least kk demands. The problem is hard to approximate---the best-known approximation ratio is O(min{n,k})O(\min\{\sqrt{n}, \sqrt{k}\}). Furthermore, kk-forest is as hard to approximate as the notoriously-hard densest kk-subgraph problem. While the kk-forest problem is hard to approximate in the worst-case, we show that with the use of resource augmentation, we can efficiently approximate it up to a constant factor. First, we restate the problem in terms of the number of demands that are {\em not} connected. In particular, the objective of the kk-forest problem can be viewed as to remove at most mkm-k demands and find a minimum-cost subgraph that connects the remaining demands. We use this perspective of the problem to explain the performance of our algorithm (in terms of the augmentation) in a more intuitive way. Specifically, we present a polynomial-time algorithm for the kk-forest problem that, for every ϵ>0\epsilon>0, removes at most mkm-k demands and has cost no more than O(1/ϵ2)O(1/\epsilon^{2}) times the cost of an optimal algorithm that removes at most (1ϵ)(mk)(1-\epsilon)(m-k) demands
    corecore