1,897 research outputs found

    Primal-Dual Algorithms for Deterministic Inventory Problems

    Full text link
    Primal-Dual Algorithms for Deterministic Inventory Problem

    Online Matching with Stochastic Rewards: Optimal Competitive Ratio via Path Based Formulation

    Full text link
    The problem of online matching with stochastic rewards is a generalization of the online bipartite matching problem where each edge has a probability of success. When a match is made it succeeds with the probability of the corresponding edge. Introducing this model, Mehta and Panigrahi (FOCS 2012) focused on the special case of identical edge probabilities. Comparing against a deterministic offline LP, they showed that the Ranking algorithm of Karp et al. (STOC 1990) is 0.534 competitive and proposed a new online algorithm with an improved guarantee of 0.5670.567 for vanishingly small probabilities. For the case of vanishingly small but heterogeneous probabilities Mehta et al. (SODA 2015), gave a 0.534 competitive algorithm against the same LP benchmark. For the more general vertex-weighted version of the problem, to the best of our knowledge, no results being 1/21/2 were previously known even for identical probabilities. We focus on the vertex-weighted version and give two improvements. First, we show that a natural generalization of the Perturbed-Greedy algorithm of Aggarwal et al. (SODA 2011), is (1−1/e)(1-1/e) competitive when probabilities decompose as a product of two factors, one corresponding to each vertex of the edge. This is the best achievable guarantee as it includes the case of identical probabilities and in particular, the classical online bipartite matching problem. Second, we give a deterministic 0.5960.596 competitive algorithm for the previously well studied case of fully heterogeneous but vanishingly small edge probabilities. A key contribution of our approach is the use of novel path-based analysis. This allows us to compare against the natural benchmarks of adaptive offline algorithms that know the sequence of arrivals and the edge probabilities in advance, but not the outcomes of potential matches.Comment: Preliminary version in EC 202

    The Stochastic Shortest Path Problem : A polyhedral combinatorics perspective

    Full text link
    In this paper, we give a new framework for the stochastic shortest path problem in finite state and action spaces. Our framework generalizes both the frameworks proposed by Bertsekas and Tsitsikli and by Bertsekas and Yu. We prove that the problem is well-defined and (weakly) polynomial when (i) there is a way to reach the target state from any initial state and (ii) there is no transition cycle of negative costs (a generalization of negative cost cycles). These assumptions generalize the standard assumptions for the deterministic shortest path problem and our framework encapsulates the latter problem (in contrast with prior works). In this new setting, we can show that (a) one can restrict to deterministic and stationary policies, (b) the problem is still (weakly) polynomial through linear programming, (c) Value Iteration and Policy Iteration converge, and (d) we can extend Dijkstra's algorithm

    Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems

    Get PDF
    We introduce an algorithm design technique for a class of combinatorial optimization problems with concave costs. This technique yields a strongly polynomial primal-dual algorithm for a concave cost problem whenever such an algorithm exists for the fixed-charge counterpart of the problem. For many practical concave cost problems, the fixed-charge counterpart is a well-studied combinatorial optimization problem. Our technique preserves constant factor approximation ratios, as well as ratios that depend only on certain problem parameters, and exact algorithms yield exact algorithms. Using our technique, we obtain a new 1.61-approximation algorithm for the concave cost facility location problem. For inventory problems, we obtain a new exact algorithm for the economic lot-sizing problem with general concave ordering costs, and a 4-approximation algorithm for the joint replenishment problem with general concave individual ordering costs
    • …
    corecore