400 research outputs found

    Data-driven Economic NMPC using Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a powerful tool to perform data-driven optimal control without relying on a model of the system. However, RL struggles to provide hard guarantees on the behavior of the resulting control scheme. In contrast, Nonlinear Model Predictive Control (NMPC) and Economic NMPC (ENMPC) are standard tools for the closed-loop optimal control of complex systems with constraints and limitations, and benefit from a rich theory to assess their closed-loop behavior. Unfortunately, the performance of (E)NMPC hinges on the quality of the model underlying the control scheme. In this paper, we show that an (E)NMPC scheme can be tuned to deliver the optimal policy of the real system even when using a wrong model. This result also holds for real systems having stochastic dynamics. This entails that ENMPC can be used as a new type of function approximator within RL. Furthermore, we investigate our results in the context of ENMPC and formally connect them to the concept of dissipativity, which is central for the ENMPC stability. Finally, we detail how these results can be used to deploy classic RL tools for tuning (E)NMPC schemes. We apply these tools on both a classical linear MPC setting and a standard nonlinear example from the ENMPC literature

    Global Convergence of Policy Gradient Primal-dual Methods for Risk-constrained LQRs

    Full text link
    While the techniques in optimal control theory are often model-based, the policy optimization (PO) approach can directly optimize the performance metric of interest without explicit dynamical models, and is an essential approach for reinforcement learning problems. However, it usually leads to a non-convex optimization problem in most cases, where there is little theoretical understanding on its performance. In this paper, we focus on the risk-constrained Linear Quadratic Regulator (LQR) problem with noisy input via the PO approach, which results in a challenging non-convex problem. To this end, we first build on our earlier result that the optimal policy has an affine structure to show that the associated Lagrangian function is locally gradient dominated with respect to the policy, based on which we establish strong duality. Then, we design policy gradient primal-dual methods with global convergence guarantees to find an optimal policy-multiplier pair in both model-based and sample-based settings. Finally, we use samples of system trajectories in simulations to validate our policy gradient primal-dual methods

    A Parallel Dual Fast Gradient Method for MPC Applications

    Full text link
    We propose a parallel adaptive constraint-tightening approach to solve a linear model predictive control problem for discrete-time systems, based on inexact numerical optimization algorithms and operator splitting methods. The underlying algorithm first splits the original problem in as many independent subproblems as the length of the prediction horizon. Then, our algorithm computes a solution for these subproblems in parallel by exploiting auxiliary tightened subproblems in order to certify the control law in terms of suboptimality and recursive feasibility, along with closed-loop stability of the controlled system. Compared to prior approaches based on constraint tightening, our algorithm computes the tightening parameter for each subproblem to handle the propagation of errors introduced by the parallelization of the original problem. Our simulations show the computational benefits of the parallelization with positive impacts on performance and numerical conditioning when compared with a recent nonparallel adaptive tightening scheme.Comment: This technical report is an extended version of the paper "A Parallel Dual Fast Gradient Method for MPC Applications" by the same authors submitted to the 54th IEEE Conference on Decision and Contro

    Distributed Design for Decentralized Control using Chordal Decomposition and ADMM

    Full text link
    We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADMM). We first apply a classical parameterization technique to restrict the optimal decentralized control into a convex problem that inherits the sparsity pattern of the original problem. The parameterization relies on a notion of strongly decentralized stabilization, and sufficient conditions are discussed to guarantee this notion. Then, chordal decomposition allows us to decompose the convex restriction into a problem with partially coupled constraints, and the framework of ADMM enables us to solve the decomposed problem in a distributed fashion. Consequently, the subsystems only need to share their model data with their direct neighbours, not needing a central computation. Numerical experiments demonstrate the effectiveness of the proposed method.Comment: 11 pages, 8 figures. Accepted for publication in the IEEE Transactions on Control of Network System

    TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers

    Full text link
    Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is computationally demanding, and is often impractical to implement on small, resource-constrained robotic platforms. We present TinyMPC, a high-speed MPC solver with a low memory footprint targeting the microcontrollers common on small robots. Our approach is based on the alternating direction method of multipliers (ADMM) and leverages the structure of the MPC problem for efficiency. We demonstrate TinyMPC both by benchmarking against the state-of-the-art solver OSQP, achieving nearly an order of magnitude speed increase, as well as through hardware experiments on a 27 g quadrotor, demonstrating high-speed trajectory tracking and dynamic obstacle avoidance.Comment: First three authors contributed equally and are ordered alphabeticall
    corecore