295 research outputs found

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    Interactive Medical Image Registration With Multigrid Methods and Bounded Biharmonic Functions

    Get PDF
    Interactive image registration is important in some medical applications since automatic image registration is often slow and sometimes error-prone. We consider interactive registration methods that incorporate user-specified local transforms around control handles. The deformation between handles is interpolated by some smooth functions, minimizing some variational energies. Besides smoothness, we expect the impact of a control handle to be local. Therefore we choose bounded biharmonic weight functions to blend local transforms, a cutting-edge technique in computer graphics. However, medical images are usually huge, and this technique takes a lot of time that makes itself impracticable for interactive image registration. To expedite this process, we use a multigrid active set method to solve bounded biharmonic functions (BBF). The multigrid approach is for two scenarios, refining the active set from coarse to fine resolutions, and solving the linear systems constrained by working active sets. We\u27ve implemented both weighted Jacobi method and successive over-relaxation (SOR) in the multigrid solver. Since the problem has box constraints, we cannot directly use regular updates in Jacobi and SOR methods. Instead, we choose a descent step size and clamp the update to satisfy the box constraints. We explore the ways to choose step sizes and discuss their relation to the spectral radii of the iteration matrices. The relaxation factors, which are closely related to step sizes, are estimated by analyzing the eigenvalues of the bilaplacian matrices. We give a proof about the termination of our algorithm and provide some theoretical error bounds. Another minor problem we address is to register big images on GPU with limited memory. We\u27ve implemented an image registration algorithm with virtual image slices on GPU. An image slice is treated similarly to a page in virtual memory. We execute a wavefront of subtasks together to reduce the number of data transfers. Our main contribution is a fast multigrid method for interactive medical image registration that uses bounded biharmonic functions to blend local transforms. We report a novel multigrid approach to refine active set quickly and use clamped updates based on weighted Jacobi and SOR. This multigrid method can be used to efficiently solve other quadratic programs that have active sets distributed over continuous regions

    Contributions of Continuous Max-Flow Theory to Medical Image Processing

    Get PDF
    Discrete graph cuts and continuous max-flow theory have created a paradigm shift in many areas of medical image processing. As previous methods limited themselves to analytically solvable optimization problems or guaranteed only local optimizability to increasingly complex and non-convex functionals, current methods based now rely on describing an optimization problem in a series of general yet simple functionals with a global, but non-analytic, solution algorithms. This has been increasingly spurred on by the availability of these general-purpose algorithms in an open-source context. Thus, graph-cuts and max-flow have changed every aspect of medical image processing from reconstruction to enhancement to segmentation and registration. To wax philosophical, continuous max-flow theory in particular has the potential to bring a high degree of mathematical elegance to the field, bridging the conceptual gap between the discrete and continuous domains in which we describe different imaging problems, properties and processes. In Chapter 1, we use the notion of infinitely dense and infinitely densely connected graphs to transfer between the discrete and continuous domains, which has a certain sense of mathematical pedantry to it, but the resulting variational energy equations have a sense of elegance and charm. As any application of the principle of duality, the variational equations have an enigmatic side that can only be decoded with time and patience. The goal of this thesis is to show the contributions of max-flow theory through image enhancement and segmentation, increasing incorporation of topological considerations and increasing the role played by user knowledge and interactivity. These methods will be rigorously grounded in calculus of variations, guaranteeing fuzzy optimality and providing multiple solution approaches to addressing each individual problem

    Trends in Mathematical Imaging and Surface Processing

    Get PDF
    Motivated both by industrial applications and the challenge of new problems, one observes an increasing interest in the field of image and surface processing over the last years. It has become clear that even though the applications areas differ significantly the methodological overlap is enormous. Even if contributions to the field come from almost any discipline in mathematics, a major role is played by partial differential equations and in particular by geometric and variational modeling and by their numerical counterparts. The aim of the workshop was to gather a group of leading experts coming from mathematics, engineering and computer graphics to cover the main developments

    Non-isometric 3D shape registration.

    Get PDF
    3D shape registration is an important task in computer graphics and computer vision. It has been widely used in the area of film industry, 3D animation, video games and AR/VR assets creation. Manually creating the 3D model of a character from scratch is tedious and time consuming, and it can only be completed by professional trained artists. With the development of 3D geometry acquisition technology, it becomes easier and cheaper to capture high-resolution and highly detailed 3D geometries. However, the scanned data are often incomplete or noisy and therefore cannot be employed directly. To deal with the above two problems, one typical and efficient solution is to deform an existing high-quality model (template) to fit the scanned data (target). Shape registration as an essential technique to do so has been arousing intensive attention. In last decades, various shape registration approaches have been proposed for accurate template fitting. However, there are still some remaining challenges. It is well known that the template can be largely different with the target in respect of size and pose. With the large (usually non-isometric) deformation between them, the shear distortion can easily occur, which may lead to poor results, such as degenerated triangles, fold-overs. Before deforming the template towards the target, reliable correspondences between them should be found first. Incorrect correspondences give the wrong deformation guidance, which can also easily produce fold-overs. As mentioned before, the target always comes with noise. This is the part we want to filter out and try not to fit the template on it. Hence, non-isometric shape registration robust to noise is highly desirable in the scene of geometry modelling from the scanned data. In this PhD research, we address existing challenges in shape registration, including how to prevent the deformation distortion, how to reduce the foldover occurrence and how to deal with the noise in the target. Novel methods including consistent as-similar as-possible surface deformation and robust Huber-L1 surface registration are proposed, which are validated through experimental comparison with state-of-the-arts. The deformation technique plays an important role in shape registration. In this research, a consistent as similar-as-possible (CASAP) surface deformation approach is proposed. Starting from investigating the continuous deformation energy, we analyse the existing term to make the discrete energy converge to the continuous one, whose property we called as energy consistency. Based on the deformation method, a novel CASAP non-isometric surface registration method is proposed. The proposed registration method well preserves the angles of triangles in the template surface so that least distortion is introduced during the surface deformation and thus reduce the risk of fold-over and self-intersection. To reduce the noise influence, a Huber-L1 based non-isometric surface registration is proposed, where a Huber-L1 regularized model constrained on the transformation variation and position difference. The proposed method is robust to noise and produces piecewise smooth results while still preserving fine details on the target. We evaluate and validate our methods through extensive experiments, whose results have demonstrated that the proposed methods in this thesis are more accurate and robust to noise in comparison of the state-of-the arts and enable us to produce high quality models with little efforts

    Dense Vision in Image-guided Surgery

    Get PDF
    Image-guided surgery needs an efficient and effective camera tracking system in order to perform augmented reality for overlaying preoperative models or label cancerous tissues on the 2D video images of the surgical scene. Tracking in endoscopic/laparoscopic scenes however is an extremely difficult task primarily due to tissue deformation, instrument invasion into the surgical scene and the presence of specular highlights. State of the art feature-based SLAM systems such as PTAM fail in tracking such scenes since the number of good features to track is very limited. When the scene is smoky and when there are instrument motions, it will cause feature-based tracking to fail immediately. The work of this thesis provides a systematic approach to this problem using dense vision. We initially attempted to register a 3D preoperative model with multiple 2D endoscopic/laparoscopic images using a dense method but this approach did not perform well. We subsequently proposed stereo reconstruction to directly obtain the 3D structure of the scene. By using the dense reconstructed model together with robust estimation, we demonstrate that dense stereo tracking can be incredibly robust even within extremely challenging endoscopic/laparoscopic scenes. Several validation experiments have been conducted in this thesis. The proposed stereo reconstruction algorithm has turned out to be the state of the art method for several publicly available ground truth datasets. Furthermore, the proposed robust dense stereo tracking algorithm has been proved highly accurate in synthetic environment (< 0.1 mm RMSE) and qualitatively extremely robust when being applied to real scenes in RALP prostatectomy surgery. This is an important step toward achieving accurate image-guided laparoscopic surgery.Open Acces

    Statistical shape analysis for bio-structures : local shape modelling, techniques and applications

    Get PDF
    A Statistical Shape Model (SSM) is a statistical representation of a shape obtained from data to study variation in shapes. Work on shape modelling is constrained by many unsolved problems, for instance, difficulties in modelling local versus global variation. SSM have been successfully applied in medical image applications such as the analysis of brain anatomy. Since brain structure is so complex and varies across subjects, methods to identify morphological variability can be useful for diagnosis and treatment. The main objective of this research is to generate and develop a statistical shape model to analyse local variation in shapes. Within this particular context, this work addresses the question of what are the local elements that need to be identified for effective shape analysis. Here, the proposed method is based on a Point Distribution Model and uses a combination of other well known techniques: Fractal analysis; Markov Chain Monte Carlo methods; and the Curvature Scale Space representation for the problem of contour localisation. Similarly, Diffusion Maps are employed as a spectral shape clustering tool to identify sets of local partitions useful in the shape analysis. Additionally, a novel Hierarchical Shape Analysis method based on the Gaussian and Laplacian pyramids is explained and used to compare the featured Local Shape Model. Experimental results on a number of real contours such as animal, leaf and brain white matter outlines have been shown to demonstrate the effectiveness of the proposed model. These results show that local shape models are efficient in modelling the statistical variation of shape of biological structures. Particularly, the development of this model provides an approach to the analysis of brain images and brain morphometrics. Likewise, the model can be adapted to the problem of content based image retrieval, where global and local shape similarity needs to be measured

    Discrete Riemannian Calculus and A Posteriori Error Control on Shape Spaces

    Get PDF
    In this thesis, a novel discrete approximation of the curvature tensor on Riemannian manifolds is derived, efficient methods to interpolate and extrapolate images in the context of the time discrete metamorphosis model are analyzed, and an a posteriori error estimator for the binary Mumford–Shah model is examined. Departing from the variational time discretization on (possibly infinite-dimensional) Riemannian manifolds originally proposed by Rumpf and Wirth, in which a consistent time discrete approximation of geodesic curves, the logarithm, the exponential map and parallel transport is analyzed, we construct the discrete curvature tensor and prove its convergence under certain smoothness assumptions. To this end, several time discrete parallel transports are applied to suitably rescaled tangent vectors, where each parallel transport is computed using Schild’s ladder. The associated convergence proof essentially relies on multiple Taylor expansions incorporating symmetry and scaling relations. In several numerical examples we validate this approach for surfaces. The by now classical flow of diffeomorphism approach allows the transport of image intensities along paths in time, which are characterized by diffeomorphisms, and the brightness of each image particle is assumed to be constant along each trajectory. As an extension, the metamorphosis model proposed by Trouvé, Younes and coworkers allows for intensity variations of the image particles along the paths, which is reflected by an additional penalization term appearing in the energy functional that quantifies the squared weak material derivative. Taking into account the aforementioned time discretization, we propose a time discrete metamorphosis model in which the associated time discrete path energy consists of the sum of squared L2-mismatch functionals of successive square-integrable image intensity functions and a regularization functional for pairwise deformations. Our main contributions are the existence proof of time discrete geodesic curves in the context of this model, which are defined as minimizers of the time discrete path energy, and the proof of the Mosco-convergence of a suitable interpolation of the time discrete to the time continuous path energy with respect to the L2-topology. Using an alternating update scheme as well as a multilinear finite element respectively cubic spline discretization for the images and deformations allows to efficiently compute time discrete geodesic curves. In several numerical examples we demonstrate that time discrete geodesics can be robustly computed for gray-scale and color images. Taking into account the time discretization of the metamorphosis model we define the discrete exponential map in the space of images, which allows image extrapolation of arbitrary length for given weakly differentiable initial images and variations. To this end, starting from a suitable reformulation of the Euler–Lagrange equations characterizing the one-step extrapolation a fixed point iteration is employed to establish the existence of critical points of the Euler–Lagrange equations provided that the initial variation is small in L2. In combination with an implicit function type argument requiring H1-closeness of the initial variation one can prove the local existence as well as the local uniqueness of the discrete exponential map. The numerical algorithm for the one-step extrapolation is based on a slightly modified fixed point iteration using a spatial Galerkin scheme to obtain the optimal deformation associated with the unknown image, from which the unknown image itself can be recovered. To prove the applicability of the proposed method we compute the extrapolated image path for real image data. A common tool to segment images and shapes into multiple regions was developed by Mumford and Shah. The starting point to derive a posteriori error estimates for the binary Mumford–Shah model, which is obtained by restricting the original model to two regions, is a uniformly convex and non-constrained relaxation of the binary model following the work by Chambolle and Berkels. In particular, minimizers of the binary model can be exactly recovered from minimizers of the relaxed model via thresholding. Then, applying duality techniques proposed by Repin and Bartels allows deriving a consistent functional a posteriori error estimate for the relaxed model. Afterwards, an a posteriori error estimate for the original binary model can be computed incorporating a suitable cut-out argument in combination with the functional error estimate. To calculate minimizers of the relaxed model on an adaptive mesh described by a quadtree structure, we employ a primal-dual as well as a purely dual algorithm. The quality of the error estimator is analyzed for different gray-scale input images
    • …
    corecore