27 research outputs found

    Prim-based Support-Graph Preconditioners for Min-Cost Flow Problems

    Get PDF
    Support-graph preconditioners have been shown to be a valuable tool for the iterative solution, via a Preconditioned Conjugate Gradient method, of the KKT systems that must be solved at each iteration of an Interior Point algorithm for the solution of Min Cost Flow problems. These preconditioners extract a proper triangulated subgraph, with ``large'' weight, of the original graph: in practice, trees and Brother-Connected Trees (BCTs) of depth two have been shown to be the most computationally efficient families of subgraphs. In the literature, approximate versions of the Kruskal algorithm for maximum-weight spanning trees have most often been used for choosing the subgraphs; Prim-based approaches have been used for trees, but no comparison have ever been reported. We propose Prim-based heuristics for BCTs, which require nontrivial modifications w.r.t. the previously proposed Kruskal-based approaches, and present a computational comparison of the different approaches, which shows that Prim-based heuristics are most often preferable to Kruskal-based ones

    Interior Point Methods 25 Years Later

    Get PDF
    Interior point methods for optimization have been around for more than 25 years now. Their presence has shaken up the field of optimization. Interior point methods for linear and (convex) quadratic programming display several features which make them particularly attractive for very large scale optimization. Among the most impressive of them are their low-degree polynomial worst-case complexity and an unrivalled ability to deliver optimal solutions in an almost constant number of iterations which depends very little, if at all, on the problem dimension. Interior point methods are competitive when dealing with small problems of dimensions below one million constraints and variables and are beyond competition when applied to large problems of dimensions going into millions of constraints and variables. In this survey we will discuss several issues related to interior point methods including the proof of the worst-case complexity result, the reasons for their amazingly fast practi-cal convergence and the features responsible for their ability to solve very large problems. The ever-growing sizes of optimization problems impose new requirements on optimizatio

    Privaatsust sĂ€ilitavad paralleelarvutused graafiĂŒlesannete jaoks

    Get PDF
    Turvalisel mitmeosalisel arvutusel pĂ”hinevate reaalsete privaatsusrakenduste loomine on SMC-protokolli arvutusosaliste ĂŒmmarguse keerukuse tĂ”ttu keeruline. Privaatsust sĂ€ilitavate tehnoloogiate uudsuse ja nende probleemidega kaasnevate suurte arvutuskulude tĂ”ttu ei ole paralleelseid privaatsust sĂ€ilitavaid graafikualgoritme veel uuritud. Graafikalgoritmid on paljude arvutiteaduse rakenduste selgroog, nagu navigatsioonisĂŒsteemid, kogukonna tuvastamine, tarneahela vĂ”rk, hĂŒperspektraalne kujutis ja hĂ”redad lineaarsed lahendajad. Graafikalgoritmide suurte privaatsete andmekogumite töötlemise kiirendamiseks ja kĂ”rgetasemeliste arvutusnĂ”uete tĂ€itmiseks on vaja privaatsust sĂ€ilitavaid paralleelseid algoritme. SeetĂ”ttu esitleb kĂ€esolev lĂ”putöö tipptasemel protokolle privaatsuse sĂ€ilitamise paralleelarvutustes erinevate graafikuprobleemide jaoks, ĂŒhe allika lĂŒhima tee, kĂ”igi paaride lĂŒhima tee, minimaalse ulatuva puu ja metsa ning algebralise tee arvutamise. Need uued protokollid on ĂŒles ehitatud kombinatoorsete ja algebraliste graafikualgoritmide pĂ”hjal lisaks SMC protokollidele. Nende protokollide koostamiseks kasutatakse ka ĂŒhe kĂ€suga mitut andmeoperatsiooni, et vooru keerukust tĂ”husalt vĂ€hendada. Oleme vĂ€ljapakutud protokollid juurutanud Sharemind SMC platvormil, kasutades erinevaid graafikuid ja vĂ”rgukeskkondi. Selles lĂ”putöös kirjeldatakse uudseid paralleelprotokolle koos nendega seotud algoritmide, tulemuste, kiirendamise, hindamiste ja ulatusliku vĂ”rdlusuuringuga. Privaatsust sĂ€ilitavate ĂŒhe allika lĂŒhimate teede ja minimaalse ulatusega puuprotokollide tegelike juurutuste tulemused nĂ€itavad tĂ”husat meetodit, mis vĂ€hendas tööaega vĂ”rreldes varasemate töödega sadu kordi. Lisaks ei ole privaatsust sĂ€ilitavate kĂ”igi paaride lĂŒhima tee protokollide hindamine ja ulatuslik vĂ”rdlusuuringud sarnased ĂŒhegi varasema tööga. Lisaks pole kunagi varem kĂ€sitletud privaatsust sĂ€ilitavaid metsa ja algebralise tee arvutamise protokolle.Constructing real-world privacy applications based on secure multiparty computation is challenging due to the round complexity of the computation parties of SMC protocol. Due to the novelty of privacy-preserving technologies and the high computational costs associated with these problems, parallel privacy-preserving graph algorithms have not yet been studied. Graph algorithms are the backbone of many applications in computer science, such as navigation systems, community detection, supply chain network, hyperspectral image, and sparse linear solvers. In order to expedite the processing of large private data sets for graphs algorithms and meet high-end computational demands, privacy-preserving parallel algorithms are needed. Therefore, this Thesis presents the state-of-the-art protocols in privacy-preserving parallel computations for different graphs problems, single-source shortest path (SSSP), All-pairs shortest path (APSP), minimum spanning tree (MST) and forest (MSF), and algebraic path computation. These new protocols have been constructed based on combinatorial and algebraic graph algorithms on top of the SMC protocols. Single-instruction-multiple-data (SIMD) operations are also used to build those protocols to reduce the round complexities efficiently. We have implemented the proposed protocols on the Sharemind SMC platform using various graphs and network environments. This Thesis outlines novel parallel protocols with their related algorithms, the results, speed-up, evaluations, and extensive benchmarking. The results of the real implementations of the privacy-preserving single-source shortest paths and minimum spanning tree protocols show an efficient method that reduced the running time hundreds of times compared with previous works. Furthermore, the evaluation and extensive benchmarking of privacy-preserving All-pairs shortest path protocols are not similar to any previous work. Moreover, the privacy-preserving minimum spanning forest and algebraic path computation protocols have never been addressed before.https://www.ester.ee/record=b555865

    Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain

    Get PDF
    The inverse problem in Electro- and Magneto-EncephaloGraphy (EEG/MEG) aims at reconstructing the underlying current distribution in the human brain using potential differences and/or magnetic fluxes that are measured non-invasively directly, or at a close distance, from the head surface. The solution requires repeated computation of the forward problem, i.e., the simulation of EEG and MEG fields for a given dipolar source in the brain using a volume-conduction model of the head. The associated differential equations are derived from the Maxwell equations. Not only do various head tissues exhibit different conductivities, some of them are also anisotropic conductors as, e.g., skull and brain white matter. To our knowledge, previous work has not extensively investigated the impact of modeling tissue anisotropy on source reconstruction. Currently, there are no readily available methods that allow direct conductivity measurements. Furthermore, there is still a lack of sufficiently powerful software packages that would yield significant reduction of the computation time involved in such complex models hence satisfying the time-restrictions for the solution of the inverse problem. In this dissertation, techniques of multimodal Magnetic Resonance Imaging (MRI) are presented in order to generate high-resolution realistically shaped anisotropic volume conductor models. One focus is the presentation of an improved segmentation of the skull by means of a bimodal T1/PD-MRI approach. The eigenvectors of the conductivity tensors in anisotropic white matter are determined using whole head Diffusion-Tensor-MRI. The Finite Element (FE) method in combination with a parallel algebraic multigrid solver yields a highly efficient solution of the forward problem. After giving an overview of state-of-the-art inverse methods, new regularization concepts are presented. Next, the sensitivity of inverse methods to tissue anisotropy is tested. The results show that skull anisotropy affects significantly EEG source reconstruction whereas white matter anisotropy affects both EEG and MEG source reconstructions. Therefore, high-resolution FE forward modeling is crucial for an accurate solution of the inverse problem in EEG and MEG.Motivation und Einordnung: Seit nun fast drei Jahrzehnten werden im Bereich der Kognitionswissenschaften und in klinischer Forschung und Routine die Quellen elektrischer Aktivitaet im menschlichen Gehirn anhand ihrer ueber das Elektroenzephalogramm (EEG) an der Kopfoberflaeche gemessenen Potentialverteilung bzw. ihres ueber das Magnetoenzephalogramm (MEG) in einigen Zentimetern Entfernung davon gemessenen magnetischen Flusses rekonstruiert. Im Vergleich zu anderen funktionellen Bildgebungsmethoden wie z.B. die Positronen-Emissions-Tomographie (PET) oder die funktionelle Magnetresonanztomographie (fMRT) hat die EEG/MEG-Quellrekonstruktion den Vorteil einer sehr hohen zeitlichen Aufloesung. Die gemessene Aktivitaet ist das Resultat von Ionenbewegungen in aktivierten kortikalen Regionen des Gehirns, den sog. Primaerstroemen. Schon im Jahr 1949 wurden erstmals die Primaerstroeme ueber Stromdipole mathematisch modelliert. Der Primaerstrom erzeugt R\'uckstr\'ome im leitf\'ahigen Gewebe des Kopfes, die sog. {\em Sekund\'arstr\'ome}. Die Rekonstruktion der Dipolquellen wird das {\em EEG/MEG inverse Problem} genannt. Dessen L\'osung erfordert die wiederholte Berechnung des {\em Vorw\'arts\-problems}, d.h. der Simulation der EEG/MEG-Feldverteilung f\'ur eine gegebene Dipolquelle im Gehirn. Ein erstes Anwendungsgebiet f\/indet sich in der Diagnose und Therapie von pharma-resistenten Epilepsien, von denen ca. 0,25\% der Weltbev\'olkerung betroffen sind und f\'ur die sich in den letzten Jahrzehnten eine systematische chirurgische Behandlung ent\-wickelt hat. Voraussetzung f\'ur einen die restlichen Gehirnregionen schonenden chirurgischen Eingrif\/f ist die Kenntnis der Lage und Ausdehnung der epileptischen Zentren. Bisher wurden diese Charakteristika in den Patienten stark belastenden invasiven Untersuchungen wie zum Beispiel Subdural- oder Tiefen-Elektroden gewonnen. Die bioelektrischen Signale von Epilepsiekranken weisen zwischen den Anfallsereignissen sog. interiktale Spikes auf. Die nicht-invasive Messung des EEG/MEG dieser interiktalen Spikes und die anschlie{\ss}ende Berechnung des epileptischen Zentrums belastet den Patienten nicht. Ein weiteres Anwendungsfeld ist die pr\'aoperative Ermittlung der Lage wichtiger funk\-tio\-nell-zu\-sam\-men\-h\'angender Zentren im Gehirn, z.B.~des prim\'ar-mo\-to\-ri\-schen, des prim\'ar-au\-di\-to\-rischen oder prim\'ar-somatosensorischen Cortex. Bei Operationen in diesen Bereichen (z.B.~Tumoroperationen) k\'onnten L\'ahmungen, H\'or- und Sensibilit\'atsst\'orungen vermieden werden. Dazu werden \'uber akustische oder sensorische Reize charakteristische Signale evoziert und \'uber Summationstechniken sichtbar gemacht. Durch das L\'osen des inversen Problems wird versucht, die zugrunde liegende Quellstruktur zu ermitteln. Neben den aufgef\'uhrten klinischen Anwendungen ergeben sich auch zahlreiche Anwendungsfelder in der Kognitionswissenschaft. Von Interesse sind z.B.~funktionelle Zusammenh\'ange im Gehirn und die Aufdeckung der aktivierten Areale w\'ahrend der Verarbeitung eines Reizes, wie z.B. der Sprachverarbeitung im Gehirn. Die L\'osung des Vorw\'artsproblems impliziert die Mo\-del\-lierung des Kopfes als Volumenleiter. Es ist bekannt, dass in makroskopischer Hinsicht Gewebe wie die Kopfhaut, der Sch\'adel, die Zerebrospinalfl\'ussigkeit (engl.: CSF) und die Hirngewebe graue und wei{\ss}e Substanz (engl.: GM und WM) verschiedene Leitf\'ahigkeiten besitzen. Der menschliche Sch\'adel ist aus drei Schichten aufgebaut, eine relativ gut leitf\'ahige spongi\'ose Schicht wird von zwei stark isolierenden Schichten, den \'au{\ss}eren und inneren Kompakta, eingeschlossen. In radialer Richtung durch den Sch\'adel handelt es sich also um eine Reihenschaltung von hohem, niedrigem und hohem Widerstand, wohingegen in den tangentialen Richtungen die Leiter parallel geschaltet sind. Als Ganzes gesehen besitzt der Sch\'adel demnach eine richtungsabh\'angige oder {\em anisotrope} Leitf\'ahigkeit mit einem gemessenen Verh\'altnis von bis zu 1 zu 10. F\'ur die faserige WM wurde ebenfalls eine Anisotropie mit einem \'ahnlichen Verh\'altnis (senkrecht zu parallel zu den Fasern) nachgewiesen. Leider existiert bis heute keine direkte Methode, die Leitf\'ahigkeit der WM nicht-invasiv in gen\'ugender Aufl\'osung zu ermittelt. Seit einigen Jahren werden aller\-dings Formalismen diskutiert, die den gesuchten Leitf\'ahigkeitstensor in Bezug setzen zum Wasserdiffusionstensor, der in WM nicht-invasiv \'uber die Diffusionstensor-MRT (DT-MRT) gemessen werden kann. Nat\'urlich wird keine fundamentale Beziehung zwischen der freien Beweglichkeit von Ionen und Wasserteilchen angenommen, sondern lediglich, dass die eingeschr\'ankte Mobilit\'at \'uber die Fasergeometrie der WM in Beziehung steht. Heutzutage werden verschiedene Ans\'atze f\'ur die L\'osung des Vor\-w\'arts\-pro\-blems genutzt und mit steigender Genauigkeit der Modellierung des Kopfvolumenleiters erh\'oht sich die Komplexit\'at der numerischen Feldberechnungen. Einfache Modelle, die immer noch am h\'aufigsten Gebrauchten, beschreiben den Kopf als Mehrschalenkugel-Leiter mit \'ublicherweise drei Schichten, die die Kopfhaut, den Sch\'adel und das Gehirn repr\'asentieren. Um besser auf die Geometrie der drei modellierten Oberfl\'achen einzugehen, wurden sog. BE-Modelle (von engl.: Boundary Element) entwickelt, die sich f\'ur isotrop leitf\'ahige Schichten eignen. Um sowohl auf realistische Geometrien als auch auf Anisotropien und Inhomogenit\'aten eingehen zu k\'onnen, wurden Finite-Elemente (FE) Modelle des Kopfes ent\-wi\-ckelt. Zwei wichtige Fragen stellen sich nun: Ist eine exakte Modellierung der vorgestellten Gewebeleitf\'ahigkeits-Anisotropien n\'otig und in welchen F\'allen reichen weniger berechnungsaufwendige Verfahren aus? Wie k\'onnen komplexe FE-Vorw\'artsmodelle hinreichend beschleunigt werden, um den Zeitrestriktionen f\'ur inverse Quellrekonstruktionen in den Anwendungen zu gen\'ugen? Es existieren zahlreiche Arbeiten, die, basierend auf FE-Modellen des Kopfes, gezeigt haben, dass \'Offnungen im Sch\'adel wie z.B. diejenige, durch die der optische Nerv eintritt oder das okzipitale Loch des Hirnstamms, oder Inhomogenit\'aten wie L\'asionen im Gehirn oder die Sutura des Sch\'adels (insbesondere bei Kleinkindern, wo die Sutura noch nicht geschlossen sind) einen nicht vernachl\'assigbaren Einfluss auf das EEG/MEG-Vorw\'arts\-problem haben. Eine erste Studie bzgl. der Sensitivit\'at zweier ausgew\'ahlter EEG-Rekonstruktionsverfahren wies teils gro{\ss}e Fehler im Falle der Nichtbeachtung von Sch\'adel-Anisotropie nach. Insbesondere f\'ur diverse klinische Anwendungen wird der sog. {\em single dipole fit} im kontinuierlichen Parameterraum verwendet. Aufgrund des hohen Berechnungsaufwands wurden solche Verfahren bisher noch nicht auf ihre Sensitivit\'at auf Sch\'adel\-anisotropie getestet. Obwohl bereits eine Studie einen nicht-vernachl\'assigbaren Einfluss auf die EEG/MEG-Vorw\'artssimulation zeigte, gibt es noch keinerlei Ergebnis zur Aus\-wir\-kung der WM-Anisotropie auf inverse Rekonstruktionsverfahren. Die L\'osung des inversen Problems ist im allgemeinen nicht eindeutig. Viele Dipol-Quell\-konfi\-gura\-tionen k\'onnen ein und dieselbe EEG und MEG Feldverteilung erzeugen. Zus\'atz\-liche Annahmen \'uber die Quellen sind dementsprechend unerl\'asslich. Bei den sog. {\em fokalen Rekonstruktionsmethoden} wird die Annahme gemacht, dass einige wenige Dipole den gemessenen Daten zugrunde liegen. Diese Dipole (Anzahl, Ort, Richtung, St\'arke) sollen innerhalb des anatomisch und physiologisch sinnvollen Suchgebiets so ermittelt werden, dass die Messwerte m\'oglichst genau erkl\'art werden, gleichzeitig aber das Rauschen keinen zu starken Einfluss auf die L\'osung nimmt und die Algorithmen stabil in Bezug auf eine \'Ubersch\'atzung der Anzahl aktiver Quellen bleiben. Bei diesen, wie auch bei den sog. {\em Stromdichterekonstruktionsverfahren}, wird sich das Konzept der Regularisierung als eine wichtige Methode herausstellen. Wissenschaftliche Ergebnisse der Dissertation: Die Ergebnisse der vorgelegten Dissertation k\'onnen in vier Teilbereiche aufgeteilt werden. Im ersten Teilbereich wurden Methoden zur Registrierung und Segmentierung multimodaler MR-Bilder vorgestellt mit dem Ziel, ein {\bf realistisches anisotropes Multigewebe Kopfmodell} zu generieren. In der Literatur wurde von gr\'o{\ss}eren EEG- und MEG-Quell\-rekonstruktions\-fehlern aufgrund mangelhafter Modellierung insbesondere der inneren Sch\'a\-del\-kante berichtet. Ein erster Fokus dieser Arbeit lag dementsprechend auf einer verbesserten Segmentierung dieser Kante, die \'uber ein auf dem T1-gewichteten MRT (T1-MRT) registrierten Protonendichte-ge\-wich\-teten MRT (PD-MRT) gewonnen wurde. Die innere Sch\'a\-del\-kante zeichnet sich im PD-MRT im Gegensatz zum T1-MRT durch einen hohen Kontrast zwischen CSF (protonenreich) und Knochen (protonenarm) aus. Das T1-MRT wurde hingegen f\'ur die Segmentierung der Kopfhaut, der GM und der WM verwendet. Die Standardtechnik im Bereich der EEG/MEG-Quellrekonstruktion nutzt lediglich ein T1-MRT und gewinnt die gesuchte innere Sch\'adelkante \'uber ein Gl\'atten und Aufblasen der segmentierten Hirnoberfl\'ache. Im Vergleich beider Methoden konnte eine Verbesserung der Segmentierung von bis zu 8,5mm in Gebieten erzielt werden, in denen die Standardmethode die Dicke der CSF-Schicht untersch\'atzte. \'Uber die vorgestellten Methoden, insbesondere der Segmentierung unter Ber\'ucksichtigung der MR-Inhomogenit\'aten, konnte zudem eine sehr exakte Modellierung der GM erzielt werden, welche dann als anatomische und auch physiologische Nebenbedingung in die Quellrekonstruktion eingebettet werden kann. Zur realistischen Modellierung der An\-iso\-tropie der Sch\'adelschicht wurde ein deformierbares Modell eingesetzt, welches eine gegl\'attete Spongiosaoberfl\'ache darstellt und somit ein Abgreifen der Leitf\'ahigkeitstensor-Eigenvektoren in radialer Knochenrichtung erm\'oglicht. Die Eigenvektoren der WM-Tensoren wurden \'uber Ganzkopf-DT-MRT gemessen. Sch\'adel- und WM-Tensor-Eigen\-werte wurden entweder unter Ausnutzung publizierter Werte simuliert oder gem\'a{\ss} einem differentialen EMA (von engl.: Effective Medium Approach) ermittelt. Der zweite Teilbereich betraf die {\bf schnelle hochaufgel\'oste FE-Modellierung} des EEG/ MEG-Vorw\'artsproblems. Zun\'achst wurde ein \'Uberblick \'uber die Theorie gegeben und die praktische Realisierung der sp\'ater eingesetzten hochaufgel\'osten anisotropen FE-Volumen\-leiter\-modelle vorgestellt. In numerischen Genauigkeitsstudien konnte nachgewiesen werden, dass Hexaeder-FE-Netze, welche ein Verschieben der St\'utzpunkte zur Gl\'attung an Gewebekanten nutzen, vorteilhaft sind zu herk\'ommlichen Hexaeder-Netzen. Dazu wurden die Reihenentwicklungsformeln f\'ur das Mehrschalenkugel-Modell eingesetzt. Ein wei\-terer Fokus dieser Arbeit lag auf dem Einsatz schneller FE-L\'osungsmethoden, welche die praktische Anwendbarkeit von hochaufgel\'osten anisotropen FE-Kopfmodellen in den verschiedenen Anwendungsgebieten erm\'oglichen sollte. In einem Zeitvergleich zwischen dem neu in die Software integrierten parallelen (12 Prozessoren) algebraischen Mehrgitter- und dem Standard-Einprozessor-Jacobi-Vor\-kon\-di\-tio\-nierer f\'ur das Verfahren der konjugierten Gradienten konnte f\'ur hochaufgel\'oste anisotrope FE-Kopfmodelle ein Beschleunigungsfaktor von mehr als 100 erzielt werden. Im dritten Teilbereich, den {\bf Methoden zum inversen Problem}, wurden neben einem \'Uber\-blick \'uber fokale Rekonstruktions\-verfahren und Stromdichte\-rekon\-struk\-tions\-verfahren algorithmische Neuentwicklungen pr\'asentiert. Es wurde zun\'achst die Methode des {\em single dipole fit} in die FE-Modellierung eingef\'uhrt. F\'ur multiple dipolare Quellen wurde ein {\em Si\-mu\-lated Annealing} Algorithmus in Kombination mit einer abgeschnittenen Singul\'arwertzerlegung im diskreten Parameterraum entwickelt. Im Vergleich zu Standardmethoden zeigte der Algorithmus in verschiedenen Si\-mu\-lations\-studien eine ver\-bes\-serte F\'ahigkeit der Unterscheidung zwischen realen und sog. {\em ghost} Quellen. Des Weiteren wurde eine k\'urzlich in der Literatur vorgestellte raum-zeitliche Regularisierungsme\-thode auf die Stromdichterekonstruktion und, als zweite Anwendung, auf die dynamische Impedanztomographie angewandt. Der raum-zeitliche Ansatz konnte dabei eine stabilisierende Wirkung auf die Rekonstruktionsergebnisse erzielen und zeigte im Hinblick auf seine Genauigkeit und den Speicher- und Rechenzeitbedarf Vorteile gegen\'uber einem sog. {\em Kal\-man-Gl\'atter}. Im letzten Teilbereich der Dissertation wurden Untersuchungen zur {\bf An\-iso\-tro\-pie-Sensi\-tivi\-t\'at} durchgef\'uhrt. Der erste Teil bezog sich dabei auf das Vorw\'arts\-problem, wo die Resultate im Einklang mit der verf\'ugbaren Literatur waren. Es kann festgehalten werden, dass Sch\'adelanisotropie einen nicht-vernachl\'assigbaren Einfluss auf die EEG-Simulation hatte, wohingegen das MEG unbeeinflusst blieb. Je mehr eine Quelle von WM umgeben war, desto gr\'o{\ss}er war der Einfluss der WM-Anisotropie auf sowohl EEG als auch MEG. F\'ur das MEG wirkte sich WM-Anisotropie insbesondere auf Quellen mit starken radialen Anteilen aus. Lokale Leitf\'ahigkeits\'anderungen im Bereich der Quelle sollten sowohl im Hinblick auf das EEG als auch auf das MEG modelliert werden. Im zweiten Teil wurden die Einfl\'usse auf die inverse Quellrekonstruktion untersucht. Mit 18mm maximalem Fehler des EEG basierten {\em single dipole fit} war die Lokalisation einer haupts\'achlich tangential orientierten oberfl\'achennahen Quelle besonders sensitiv gegen\'uber einer 1 zu 10 Sch\'adelanisotropie. Da die tangentialen Quellen im temporalen Bereich (Sch\'adel re\-la\-tiv d\'unn) zu tief und im parietalen und okzipitalen Bereich (Sch\'adel relativ dick) zu oberfl\'achennah lokalisiert wurden, scheint eine Approximation der Sch\'adelanisotropie in BE-Modellen \'uber eine Anpassung des skalaren Sch\'adelleitf\'ahigkeitswertes nicht m\'oglich zu sein. Obwohl bei Vernachl\'assigung der WM-Anisotropie der maximale EEG-Lokalisierungsfehler mit 6,2mm f\'ur eine tiefe Quelle wesentlich geringer ausfiel, kann aufgrund eines maximalen Orientierungsfehlers von 24∘^{\circ} und einer mehr als zweifach untersch\'atzten Quellst\'arke eine Missinterpretation des Ergebnisses nicht ausgeschlossen werden. F\'ur die Rekonstruktion der vier tangentialen oberfl\'achennahen Dipole, welche als Aktivit\'atszentren der sog. {\em Early Left Anterior Negativity} (ELAN) Komponente bei der Syntaxanalyse von Sprache betrachtet werden, stellte sich WM und Sch\'adel\-anisotropie als vernachl\'assigbar im Hinblick auf eine MEG-Rekonstruk\-tion heraus. Im Gegensatz dazu wurde das EEG-Rekonstruktionsergebnis f\'ur alle getesteten inversen Verfahren stark verf\'alscht. Anisotropie verschob das Aktivit\'ats\-zentrum von L1L_1 und L2L_2 Norm Stromdichterekonstruktionsverfahren entlang der Sylvischen Furche in anteriore Richtung

    Variational methods and its applications to computer vision

    Get PDF
    Many computer vision applications such as image segmentation can be formulated in a ''variational'' way as energy minimization problems. Unfortunately, the computational task of minimizing these energies is usually difficult as it generally involves non convex functions in a space with thousands of dimensions and often the associated combinatorial problems are NP-hard to solve. Furthermore, they are ill-posed inverse problems and therefore are extremely sensitive to perturbations (e.g. noise). For this reason in order to compute a physically reliable approximation from given noisy data, it is necessary to incorporate into the mathematical model appropriate regularizations that require complex computations. The main aim of this work is to describe variational segmentation methods that are particularly effective for curvilinear structures. Due to their complex geometry, classical regularization techniques cannot be adopted because they lead to the loss of most of low contrasted details. In contrast, the proposed method not only better preserves curvilinear structures, but also reconnects some parts that may have been disconnected by noise. Moreover, it can be easily extensible to graphs and successfully applied to different types of data such as medical imagery (i.e. vessels, hearth coronaries etc), material samples (i.e. concrete) and satellite signals (i.e. streets, rivers etc.). In particular, we will show results and performances about an implementation targeting new generation of High Performance Computing (HPC) architectures where different types of coprocessors cooperate. The involved dataset consists of approximately 200 images of cracks, captured in three different tunnels by a robotic machine designed for the European ROBO-SPECT project.Open Acces

    The Sixth Copper Mountain Conference on Multigrid Methods, part 2

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth
    corecore