167 research outputs found

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Investment and Pricing with Spectrum Uncertainty: A Cognitive Operator's Perspective

    Full text link
    This paper studies the optimal investment and pricing decisions of a cognitive mobile virtual network operator (C-MVNO) under spectrum supply uncertainty. Compared with a traditional MVNO who often leases spectrum via long-term contracts, a C-MVNO can acquire spectrum dynamically in short-term by both sensing the empty "spectrum holes" of licensed bands and dynamically leasing from the spectrum owner. As a result, a C-MVNO can make flexible investment and pricing decisions to match the current demands of the secondary unlicensed users. Compared to dynamic spectrum leasing, spectrum sensing is typically cheaper, but the obtained useful spectrum amount is random due to primary licensed users' stochastic traffic. The C-MVNO needs to determine the optimal amounts of spectrum sensing and leasing by evaluating the trade off between cost and uncertainty. The C-MVNO also needs to determine the optimal price to sell the spectrum to the secondary unlicensed users, taking into account wireless heterogeneity of users such as different maximum transmission power levels and channel gains. We model and analyze the interactions between the C-MVNO and secondary unlicensed users as a Stackelberg game. We show several interesting properties of the network equilibrium, including threshold structures of the optimal investment and pricing decisions, the independence of the optimal price on users' wireless characteristics, and guaranteed fair and predictable QoS among users. We prove that these properties hold for general SNR regime and general continuous distributions of sensing uncertainty. We show that spectrum sensing can significantly improve the C-MVNO's expected profit and users' payoffs.Comment: A shorter version appears in IEEE INFOCOM 2010. This version has been submitted to IEEE Transactions on Mobile Computin

    Load Shifting in the Smart Grid: To Participate or Not?

    Full text link
    Demand-side management (DSM) has emerged as an important smart grid feature that allows utility companies to maintain desirable grid loads. However, the success of DSM is contingent on active customer participation. Indeed, most existing DSM studies are based on game-theoretic models that assume customers will act rationally and will voluntarily participate in DSM. In contrast, in this paper, the impact of customers' subjective behavior on each other's DSM decisions is explicitly accounted for. In particular, a noncooperative game is formulated between grid customers in which each customer can decide on whether to participate in DSM or not. In this game, customers seek to minimize a cost function that reflects their total payment for electricity. Unlike classical game-theoretic DSM studies which assume that customers are rational in their decision-making, a novel approach is proposed, based on the framework of prospect theory (PT), to explicitly incorporate the impact of customer behavior on DSM decisions. To solve the proposed game under both conventional game theory and PT, a new algorithm based on fictitious player is proposed using which the game will reach an epsilon-mixed Nash equilibrium. Simulation results assess the impact of customer behavior on demand-side management. In particular, the overall participation level and grid load can depend significantly on the rationality level of the players and their risk aversion tendency.Comment: 9 pages, 7 figures, journal, accepte

    Entry, competition and regulation in cognitive radio scenarios: a simple game theory model

    Full text link
    [EN] Spectrum management based on private commons is argued to be a realistic scenario for cognitive radio deployment within the current mobile market structure. A scenario is proposed where a secondary entrant operator leases spectrum from a primary incumbent operator. The secondary operator innovates incorporating cognitive radio technology, and it competes in quality of service and price against the primary operator in order to provide service to users. We aim to assess which benefit users get from the entry of secondary operators in the market. A game theory-based model for analyzing both the competition between operators and the subscription decision by users is proposed. We conclude that an entrant operator adopting an innovative technology is better off entering the market, and that a regulatory authority should intervene first allowing the entrant operator to enter the market and then setting a maximum amount of spectrum leased. This regulatory intervention is justified in terms of users utility and social welfare.This work was supported by Spanish government through project TIN2010-21378-C02-02.Guijarro Coloma, LA.; Pla, V.; Vidal Catalá, JR.; Martínez Bauset, J. (2012). Entry, competition and regulation in cognitive radio scenarios: a simple game theory model. Mathematical Problems in Engineering. 1-13. https://doi.org/10.1155/2012/620972S11
    corecore