793 research outputs found

    Replenishment decisions under an all-units discount schedule and stepwise freight costs

    Get PDF
    Cataloged from PDF version of article.In this study, we analyze the replenishment decisions under a general replenishment cost structure that includes stepwise freight costs and all-units quantity discounts. We first formulate a general model that accounts for a larger class of problems and prove several useful properties of the expected profit function. We later utilize these properties to develop a computational solution approach to find the optimal order quantity. As an application of the general results, we study the replenishment decisions in the single-period, i.e., the Newsboy, problem considering several scenarios that model the cost considerations either for the buyer or for both the buyer and the vendor. 2008 Elsevier B.V. All rights reserved

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research

    Essays on Shipment Consolidation Scheduling and Decision Making in the Context of Flexible Demand

    Get PDF
    This dissertation contains three essays related to shipment consolidation scheduling and decision making in the presence of flexible demand. The first essay is presented in Section 1. This essay introduces a new mathematical model for shipment consolidation scheduling for a two-echelon supply chain. The problem addresses shipment coordination and consolidation decisions that are made by a manufacturer who provides inventory replenishments to multiple downstream distribution centers. Unlike previous studies, the consolidation activities in this problem are not restricted to specific policies such as aggregation of shipments at regular times or consolidating when a predetermined quantity has accumulated. Rather, we consider the construction of a detailed shipment consolidation schedule over a planning horizon. We develop a mixed-integer quadratic optimization model to identify the shipment consolidation schedule that minimizes total cost. A genetic algorithm is developed to handle large problem instances. The other two essays explore the concept of flexible demand. In Section 2, we introduce a new variant of the vehicle routing problem (VRP): the vehicle routing problem with flexible repeat visits (VRP-FRV). This problem considers a set of customers at certain locations with certain maximum inter-visit time requirements. However, they are flexible in their visit times. The VRP-FRV has several real-world applications. One scenario is that of caretakers who provide service to elderly people at home. Each caretaker is assigned a number of elderly people to visit one or more times per day. Elderly people differ in their requirements and the minimum frequency at which they need to be visited every day. The VRP-FRV can also be imagined as a police patrol routing problem where the customers are various locations in the city that require frequent observations. Such locations could include known high-crime areas, high-profile residences, and/or safe houses. We develop a math model to minimize the total number of vehicles needed to cover the customer demands and determine the optimal customer visit schedules and vehicle routes. A heuristic method is developed to handle large problem instances. In the third study, presented in Section 3, we consider a single-item cyclic coordinated order fulfillment problem with batch supplies and flexible demands. The system in this study consists of multiple suppliers who each deliver a single item to a central node from which multiple demanders are then replenished. Importantly, demand is flexible and is a control action that the decision maker applies to optimize the system. The objective is to minimize total system cost subject to several operational constraints. The decisions include the timing and sizes of batches delivered by the suppliers to the central node and the timing and amounts by which demanders are replenished. We develop an integer programing model, provide several theoretical insights related to the model, and solve the math model for different problem sizes

    Production distribution planning in a multiechelon supply chain using carbon policies: A review and reflections

    Get PDF
    Sustainability of a supply chain has gained more attention from economists, environmentalists, consumers, manufacturers, government and the academia. In this paper, the literature survey has been performed on production allocation problem in a multi-echelon supply chain with carbon policies. With web-based search engines such as Scopus and Web of Science several resources such as journals, conference proceedings and books are selected and reviewed. It is observed from the literature that the mentioned problem traces the progression of carbon policies in a supply chain over the past 22 years to provide substantiation for Green Supply Chain. The research papers are then analyzed and categorized to construct the useful foundation of previous studies. Moreover, the importance of this problem in recent years needs has been highlighted by mentioning the gaps in the literature. Further, at the end of the paper, several future work directions in this area also suggested.(undefined)info:eu-repo/semantics/publishedVersio

    Optimizing lot sizing model for perishable bread products using genetic algorithm

    Get PDF
    This research addresses order planning challenges related to perishable products, using bread products as a case study. The problem is how to effi­ci­ently manage the various bread products ordered by diverse customers, which requires distributors to determine the optimal number of products to order from suppliers. This study aims to formulate the problem as a lot-sizing model, considering various factors, including customer demand, in­ven­tory constraints, ordering capacity, return rate, and defect rate, to achieve a near or optimal solution, Therefore determining the optimal order quantity to reduce the total ordering cost becomes a challenge in this study. However, most lot sizing problems are combinatorial and difficult to solve. Thus, this study uses the Genetic Algorithm (GA) as the main method to solve the lot sizing model and determine the optimal number of bread products to order. With GA, experiments have been conducted by combining the values of population, crossover, mutation, and generation parameters to maximize the feasibility value that represents the minimal total cost. The results obtained from the application of GA demonstrate its effectiveness in generating near or optimal solutions while also showing fast computational performance. By utilizing GA, distributors can effectively minimize wastage arising from expired or perishable products while simultaneously meeting customer demand more efficiently. As such, this research makes a significant contri­bution to the development of more effective and intelligent decision-making strategies in the domain of perishable products in bread distribution.Penelitian ini berfokus untuk mengatasi tantangan perencanaan pemesanan yang berkaitan dengan produk yang mudah rusak, dengan menggunakan produk roti sebagai studi kasus. Permasalahan yang dihadapi adalah bagaimana mengelola berbagai produk roti yang dipesan oleh pelanggan yang beragam secara efisien, yang mengharuskan distributor untuk menentukan jumlah produk yang optimal untuk dipesan dari pemasok. Untuk mencapai solusi yang optimal, penelitian ini bertujuan untuk memformulasikan masalah tersebut sebagai model lot-sizing, dengan mempertimbangkan berbagai faktor, termasuk permintaan pelanggan, kendala persediaan, kapasitas pemesanan, tingkat pengembalian, dan tingkat cacat. Oleh karena itu, menentukan jumlah pemesanan yang optimal untuk mengurangi total biaya pemesanan menjadi tantangan dalam penelitian ini. Namun, sebagian besar masalah lot sizing bersifat kombinatorial dan sulit untuk dipecahkan, oleh karena itu, penelitian ini menggunakan Genetic Algorithm (GA) sebagai metode utama untuk menyelesaikan model lot sizing dan menentukan jumlah produk roti yang optimal untuk dipesan. Dengan GA, telah dilakukan percobaan dengan mengkombinasikan nilai parameter populasi, crossover, mutasi, dan generasi untuk memaksimalkan nilai kelayakan yang merepresentasikan total biaya yang minimal. Hasil yang diperoleh dari penerapan GA menunjukkan keefektifannya dalam menghasilkan solusi yang optimal, selain itu juga menunjukkan kinerja komputasi yang cepat. Dengan menggunakan GA, distributor dapat secara efektif meminimalkan pemborosan yang timbul akibat produk yang kadaluarsa atau mudah rusak, sekaligus memenuhi permintaan pelanggan dengan lebih efisien. Dengan demikian, penelitian ini memberikan kontribusi yang signifikan terhadap pengembangan strategi pengambilan keputusan yang lebih efektif dan cerdas dalam domain produk yang mudah rusak dalam distribusi roti

    Mitigating the Cost of Anarchy in Supply Chain Systems

    Get PDF
    In a decentralized two-stage supply chain where a supplier serves a retailer who, in turn, serves end customers, operations decisions based on local incentives often lead to suboptimal system performance. Operating decisions based on local incentives may in such cases lead to a degree of system disorder or anarchy, wherein one party's decisions put the other party and/or the system at a disadvantage. While models and mechanisms for such problem classes have been considered in the literature, little work to date has considered such problems under nonstationary demands and fixed replenishment order costs. This paper models such two-stage problems as a class of Stackelberg games where the supplier announces a set of time-phased ordering costs to the retailer over a discrete time horizon of finite length, and the retailer then creates an order plan, which then serves as the supplier's demand. We provide metrics for characterizing the degree of efficiency (and anarchy) associated with a solution, and provide a set of easily understood and implemented mechanisms that can increase this efficiency and reduce the negative impacts of anarchic decisions

    Quantitative Models for Centralised Supply Chain Coordination

    Get PDF

    The impact of freight transport capacity limitations on supply chain dynamics

    Get PDF
    We investigate how capacity limitations in the transportation system affect the dynamic behaviour of supply chains. We are interested in the more recently defined, 'backlash' effect. Using a system dynamics simulation approach, we replicate the well-known Beer Game supply chain for different transport capacity management scenarios. The results indicate that transport capacity limitations negatively impact on inventory and backlog costs, although there is a positive impact on the 'backlash' effect. We show that it is possible for both backlog and inventory to simultaneous occur, a situation which does not arise with the uncapacitated scenario. A vertical collaborative approach to transport provision is able to overcome such a trade-off. © 2013 Taylor & Francis

    Economic evaluation in decision models: a critical review and methodological propositions

    Get PDF
    International audienceDecision models of industrial management articles are often based on an economic criterion to find the proposed solution. They use economic parameters that are generally imported from the firm cost accounting system. When cost information is not adapted to the decision, the obtained solution of the model may be invalid. In this article, we deal with a critical literature review to report the methodological problems encountered in industrial management articles vis-à-vis the used costs. Finally we suggest methodological propositions to be kept in mind by authors when they are using costs in decision models
    corecore