9,993 research outputs found

    Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    Full text link
    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as to achieve systemwide reliability. More specifically, when the opportunistic users are non-persistent, i.e., a subset of them leave the power market when the real-time price is not acceptable, we obtain closedform solutions to the two-level scheduling problem. For the persistent case, we treat the scheduling problem as a multitimescale Markov decision process. We show that it can be recast, explicitly, as a classic Markov decision process with continuous state and action spaces, the solution to which can be found via standard techniques. We conclude that the proposed multi-scale dispatch and scheduling with real-time pricing can effectively address the volatility and uncertainty of wind generation and energy demand, and has the potential to improve the penetration of renewable energy into smart grids.Comment: Submitted to IEEE Infocom 2011. Contains 10 pages and 4 figures. Replaces the previous arXiv submission (dated Aug-23-2010) with the same titl

    Distributed Stochastic Market Clearing with High-Penetration Wind Power

    Full text link
    Integrating renewable energy into the modern power grid requires risk-cognizant dispatch of resources to account for the stochastic availability of renewables. Toward this goal, day-ahead stochastic market clearing with high-penetration wind energy is pursued in this paper based on the DC optimal power flow (OPF). The objective is to minimize the social cost which consists of conventional generation costs, end-user disutility, as well as a risk measure of the system re-dispatching cost. Capitalizing on the conditional value-at-risk (CVaR), the novel model is able to mitigate the potentially high risk of the recourse actions to compensate wind forecast errors. The resulting convex optimization task is tackled via a distribution-free sample average based approximation to bypass the prohibitively complex high-dimensional integration. Furthermore, to cope with possibly large-scale dispatchable loads, a fast distributed solver is developed with guaranteed convergence using the alternating direction method of multipliers (ADMM). Numerical results tested on a modified benchmark system are reported to corroborate the merits of the novel framework and proposed approaches.Comment: To appear in IEEE Transactions on Power Systems; 12 pages and 9 figure

    A Review of ISO New England's Proposed Market Rules

    Get PDF
    This report reviews the proposed rules for restructured wholesale electricity markets in New England. We review the market rules, both individually and collectively, and identify potential problems that might limit the efficiency of these markets. We examine alternatives and identify the key tradeoffs among alternative designs. We believe that the wholesale electricity market in New England can begin on December 1, 1998. However, improvements are needed for long-run success. We have identified four major recommendations: 1. Switch to a multi-settlement system. 2. Introduce demand-side bidding. 3. Adopt location-based transmission congestion pricing, especially for the import/export interfaces. 4. Fix the pricing of the ten minute spinning reserves.Auctions; Multiple Object Auctions; Electricity Auctions

    Price Spikes in Electricity Markets: A Strategic Perspective

    Get PDF
    This paper aims to analyze the issue of price spikes in electricity markets through the lens of noncooperative game theory. The case we consider is Australia’s long established National Electricity Market (NEM). Specifically, we adapt von der Fehr and Harbord’s multi-unit auction model to settings that more closely reflect the structure of the NEM, showing that price spikes can be related to a specifiable threshold in demand.Electricity Markets, Spot Price Behaviour, Non-Cooperative Game Theory.
    • …
    corecore